1
|
Cheng M, Wu W, Li Q, Tao X, Jiang F, Li J, Shen N, Wang F, Luo P, He Q, Huang P, Xu Z, Zhang Y. Sotorasib-impaired degradation of NEU1 contributes to cardiac injury by inhibiting AKT signaling. Cell Death Discov 2025; 11:169. [PMID: 40221400 PMCID: PMC11993734 DOI: 10.1038/s41420-025-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Sotorasib, the inaugural targeted inhibitor sanctioned for the management of patients afflicted with locally advanced or metastatic non-small cell lung cancer presenting the KRAS G12C mutation, has encountered clinical application constraints due to its potential for cardiac injury as evidenced by safety trials. This investigation has elucidated that the heightened expression of neuraminidase-1 (NEU1) constitutes the principal etiology of cardiac damage induced by sotorasib. Mechanistically, sotorasib treatment inhibited the ubiquitinated degradation of NEU1, leading to its elevated expression, which induced downstream AKT signaling pathway inhibition and mitochondrial dysfunction leading to cardiomyocyte apoptosis. Meanwhile, in vivo and in vitro studies showed that D-pantothenic acid (D-PAC) alleviated sotorasib-induced cardiac damage by promoting NEU1 degradation. In conclusion, this study revealed that NEU1 is a key protein in sotorasib cardiotoxicity and that reducing the level of this protein is a critical strategy for the clinical treatment of sotorasib-induced cardiac injury. Schematic representation of a mechanism.
Collapse
Affiliation(s)
- Mengting Cheng
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qing Li
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, People's Republic of China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
2
|
YUAN X, LI L, ZHAO Q, ZHANG X, LI Q, ZHAO X, JI X. [Establishment and evaluation of haloalkane dehalogenase tagged α1A-adrenergic receptor chromatography]. Se Pu 2024; 42:935-942. [PMID: 39327657 PMCID: PMC11439135 DOI: 10.3724/sp.j.1123.2024.04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 09/28/2024] Open
Abstract
Receptor chromatography is an efficient analytical technique that combines the high separation ability of chromatography with the high specificity of receptors for drug recognition. In addition, this technique offers the advantages of active recognition, online separation, and convenient multidimensional target tracking. This strategy allows target active ingredients in complex systems, such as traditional Chinese medicines, to be efficiently screened and accurately identified. Furthermore, the interactions between ligands and immobilized proteins can be studied. To avoid a loss in function, receptor chromatography requires efficient, mild, and simple immobilization methods that do not damage the structure of the immobilized receptors. Improvements in the activity, stability, and ligand-recognition specificity of immobilized functional proteins can be achieved by selecting appropriate immobilization conditions. Notably, the protein immobilization method is not only closely related to the recognition ability of receptor chromatography but also determines the accuracy of the technique. Common methods for immobilizing functional proteins include physical adsorption, chemical reactions, biological affinity reactions, and click chemistry. Despite being easy to operate under mild reaction conditions, these methods have shortcomings, including poor reaction specificity and the necessity of using high-purity functional proteins to prepare chromatography columns. Maintaining the high activity of immobilized receptors and ensuring excellent identification and separation abilities are key challenges in the further development of receptor chromatography. In this work, these issues were addressed by introducing a specific bioorthogonal reaction involving haloalkane dehalogenase (Halo) and 6-chlorohexanoic acid for the immobilization of the α1A-adrenergic receptor (α1A-AR). Specifically, Halo-α1A-AR was immobilized on the surface of 6-chlorohexanoic acid-modified aminopropyl silica gel in one step. The stationary phase with immobilized Halo-α1A-AR was characterized using scanning electron microscopy. Moreover, the activity of the Halo-α1A-AR chromatographic column was evaluated using specific ligands (terazosin hydrochloride, phentolamine mesylate, tamsulosin hydrochloride, and urapidil) and nonspecific ligands (yohimbe and metoprolol) for α1A-AR. Halo-α1A-AR was successfully immobilized on the silica gel surface with good stability over 30 days, and the Halo-α1A-AR chromatographic column exhibited good ligand-recognition activity. The nonlinear chromatography results indicated that prazosin hydrochloride, terazosin hydrochloride, and urapidil interacted with immobilized Halo-α1A-AR through one type of binding site, with association constants of 3.85×105, 5.00×105, and 5.90×105L/mol, respectively. In contrast, phentolamine mesylate and tamsulosin hydrochloride interacted with immobilized Halo-α1A-AR through two types of binding site. The association constants with the high- and low-affinity binding sites were 3.12×106 and 6.01×105L/mol, respectively, for phentolamine mesylate and 9.98×105 and 0.21×105L/mol, respectively, for tamsulosin hydrochloride. Compared with the traditional carbonyldiimidazole method, the immobilization method developed in this work did not require receptor purification and thus minimized the loss of receptor activity. The affinity constants obtained with immobilized Halo-α1A-AR were consistent with the values determined for receptor-ligand binding in solution, indicating that the Halo-α1A-AR chromatography column is suitable for studying drug-protein interactions. This approach also provides a foundation for the efficient screening and accurate determination of target active ingredients in complex systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu JI
- Tel:(029)33755433,E-mail:(冀旭)
| |
Collapse
|
3
|
Lillehoj EP, Yu Y, Verceles AC, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE. Stenotrophomonas maltophilia provokes NEU1-mediated release of a flagellin-binding decoy receptor that protects against lethal infection. iScience 2024; 27:110866. [PMID: 39314239 PMCID: PMC11418149 DOI: 10.1016/j.isci.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Stenotrophomonas maltophilia (Sm), a multidrug-resistant pathogen often isolated from immunocompromised individuals, presents its flagellin to multimeric tandem repeats within the ectodomain of mucin-1 (MUC1-ED), expressed on airway epithelia. Flagellated Sm increases neuraminidase-1 (NEU1) sialidase association with and desialylation of MUC1-ED. This NEU1-mediated MUC1-ED desialylation unmasks cryptic binding sites for Sm flagellin, increasing flagellin and Sm binding to airway epithelia. MUC1 overexpression increases receptor number whereas NEU1 overexpression elevates receptor binding affinity. Silencing of either MUC1 or NEU1 reduces the flagellin-MUC1 interaction. Sm/flagellin provokes MUC1-ED autoproteolysis at a juxtamembranous glycine-serine peptide bond. MUC1-ED shedding from the epithelium not only occurs in vitro, but in the bronchoalveolar compartments of Sm/flagellin-challenged mice and patients with ventilator-associated Sm pneumonia. Finally, the soluble flagellin-targeting, MUC1-ED decoy receptor dose-dependently inhibits multiple Sm flagellin-driven pathogenic processes, in vitro, including motility, biofilm formation, adhesion, and proinflammatory cytokine production, and protects against lethal Sm lung infection, in vivo.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Avelino C. Verceles
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Simeon E. Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Aljohani MA, Sasaki H, Sun XL. Cellular translocation and secretion of sialidases. J Biol Chem 2024; 300:107671. [PMID: 39128726 PMCID: PMC11416241 DOI: 10.1016/j.jbc.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Sialidases (or neuraminidases) catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly the removal of the terminal Sia on glycans (desialylation) of either glycoproteins or glycolipids. Therefore, sialidases can modulate the functionality of the target glycoprotein or glycolipid and are involved in various biological pathways in health and disease. In mammalian cells, there are four kinds of sialidase, which are Neu1, Neu2, Neu3, and Neu4, based on their subcellular locations and substrate specificities. Neu1 is the lysosomal sialidase, Neu2 is the cytosolic sialidase, Neu3 is the plasma membrane-associated sialidase, and Neu4 is found in the lysosome, mitochondria, and endoplasmic reticulum. In addition to specific subcellular locations, sialidases can translocate to different subcellular localizations within particular cell conditions and stimuli, thereby participating in different cellular functions depending on their loci. Lysosomal sialidase Neu1 can translocate to the cell surface upon cell activation in several cell types, including immune cells, platelets, endothelial cells, and epithelial cells, where it desialylates receptors and thus impacts receptor activation and signaling. On the other hand, cells secrete sialidases upon activation. Secreted sialidases can serve as extracellular sialidases and cause the desialylation of both extracellular glycoproteins or glycolipids and cell surface glycoproteins or glycolipids on their own and other cells, thus playing roles in various biological pathways as well. This review discusses the recent advances and understanding of sialidase translocation in different cells and secretion from different cells under different conditions and their involvement in physiological and pathological pathways.
Collapse
Affiliation(s)
- Majdi A Aljohani
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hiroaki Sasaki
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA; Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Kiyose-shi, Tokyo, Japan
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Chen W, Liu C, He Y, Jiang T, Chen Q, Zhang H, Gao R. ALKBH5-Mediated m 6A Modification Drives Apoptosis in Renal Tubular Epithelial Cells by Negatively Regulating MUC1. Mol Biotechnol 2024:10.1007/s12033-024-01250-2. [PMID: 39172331 DOI: 10.1007/s12033-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Dysregulation of renal tubular epithelial cell (RTEC) apoptosis is one of the critical steps underlying the occurrence and development of nephrolithiasis. Although N6-methyladenosine (m6A) modification has been extensively studied and associated with various pathologic processes, research on its specific role in RTEC injury and apoptosis remains limited. In this study, we found that overexpression of ALKBH5 reduced the level of m6A modification in RTEC cells and notably promoted RTEC apoptosis. Further mechanism studies revealed that ALKBH5 mainly decreased the m6A level on the mRNA of Mucin 1 (MUC1) gene in RTECs. Moreover, ALKBH5 impaired the stability of MUC1 mRNA in RTECs, leading to attenuated expression of MUC1. Finally, we determined that the ALKBH5-MUC1 axis primarily facilitated RTEC apoptosis by regulating the PI3K/Akt signaling pathway. This study revealed the critical role of the ALKBH5-MUC1-PI3K/Akt regulatory system in RTEC apoptosis and provided new therapeutic targets for treating nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
6
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|