1
|
Stocker WA, Olenick L, Maskey S, Skrombolas D, Luan H, Harrison SG, Wilson M, Traas A, Heffernan M, Busfield S, Walton KL, Harrison CA. Gene therapy with feline anti-Müllerian hormone analogs disrupts folliculogenesis and induces pregnancy loss in female domestic cats. Nat Commun 2025; 16:1668. [PMID: 39955296 PMCID: PMC11830062 DOI: 10.1038/s41467-025-56924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
For female domestic cats, ovariohysterectomy is the only method of inducing permanent infertility. However, hundreds-of-millions of free-roaming cats globally highlight the necessity for alternative contraceptive approaches. One strategy involves a single injection of vector delivering a fertility-inhibiting protein for lifetime contraception. Recent studies in mice and cats have identified anti-Müllerian hormone as an excellent candidate for this type of contraception. Here, we leverage our recent characterization of the molecular mechanisms underlying human anti-Müllerian hormone synthesis and activity, to generate potent feline anti-Müllerian hormone analogs. Single intramuscular delivery of these analogs to female cats using an adeno-associated viral vector leads to a greater than 1000-fold increase in feline anti-Müllerian hormone levels, which are sustained for 9 months. High serum anti-Müllerian hormone is associated with abnormal estrus cyclicity, non-follicular ovarian cyst formation, and a progressive decline in antral follicle numbers, however, the few surviving large follicles continue to ovulate. Unlike previous studies, supraphysiologic levels of anti-Müllerian hormone do not block conception, although they are incompatible with the maintenance of pregnancy. Our findings highlight the complexity of the effects of anti-Müllerian hormone on ovarian physiology but confirm that this growth factor is a candidate for fertility control in free-roaming cats.
Collapse
Affiliation(s)
- William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | | | - Shreya Maskey
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Haitong Luan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sophie G Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matt Wilson
- Scout Bio, 601 Walnut St, Philadelphia, PA, USA
| | - Anne Traas
- Scout Bio, 601 Walnut St, Philadelphia, PA, USA
| | | | | | - Kelly L Walton
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Craig A Harrison
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Howard JA, Hok L, Cate RL, Sanford NJ, Hart KN, Leach EAE, Bruening AS, Nagykery N, Donahoe PK, Pépin D, Thompson TB. A divergent two-domain structure of the anti-Müllerian hormone prodomain. Proc Natl Acad Sci U S A 2025; 122:e2418088122. [PMID: 39805014 PMCID: PMC11760506 DOI: 10.1073/pnas.2418088122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent. While the prodomain can be displaced by the type II receptor, AMHR2, the nature of the GF:prodomain interaction and the mechanism of prodomain displacement by AMHR2 are currently unknown. We show here that the AMH prodomain exhibits an atypical two-domain structure, containing a dimerizing and a GF-binding domain connected through a flexible linker. Cryo-EM and genomic analyses show that the distinctive GF-binding domain, the result of an exon insertion 450 Mya, comprises a helical bundle and a belt-like structure which interact with the GF at the type II and I receptor binding sites, respectively. The dimerizing domain, which adopts a TGFβ-like propeptide fold, covalently connects two prodomains through intermolecular disulfide bonds. Disease mutations map to both the GF-binding and dimerization domains. Our results support a model where AMHR2 displaces the helical bundle and induces a conformational change in the GF, followed by release of the prodomain and engagement of the type I receptor. Collectively, this study shows that the AMH prodomain has evolved an atypical binding interaction with the GF that favors, without disrupting signaling, the maintenance of a noncovalent complex until receptors are engaged.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH45267
| | - Lucija Hok
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH45267
| | | | - Nathaniel J. Sanford
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH45267
| | - Kaitlin N. Hart
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH45267
| | - Edmund A. E. Leach
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH45267
| | - Alena S. Bruening
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH45267
| | - Nicholas Nagykery
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - David Pépin
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | - Thomas B. Thompson
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH45267
| |
Collapse
|
3
|
Howard JA, Hok L, Cate RL, Sanford NJ, Hart KN, Leach EAE, Bruening AS, Pépin D, Donahoe PK, Thompson TB. Structural Basis of Non-Latent Signaling by the Anti-Müllerian Hormone Procomplex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587627. [PMID: 38617313 PMCID: PMC11014609 DOI: 10.1101/2024.04.01.587627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Most TGFβ family ligands exist as procomplexes consisting of a prodomain noncovalently bound to a growth factor (GF); Whereas some prodomains confer latency, the Anti-Müllerian Hormone (AMH) prodomain maintains a remarkably high affinity for the GF yet remains active. Using single particle EM methods, we show the AMH prodomain consists of two subdomains: a vestigial TGFβ prodomain-like fold and a novel, helical bundle GF-binding domain, the result of an exon insertion 450 million years ago, that engages both receptor epitopes. When associated with the prodomain, the AMH GF is distorted into a strained, open conformation whose closure upon bivalent binding of AMHR2 displaces the prodomain through a conformational shift mechanism to allow for signaling.
Collapse
Affiliation(s)
- James A Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Lucija Hok
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH, United States
| | - Richard L Cate
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Nathaniel J Sanford
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Edmund AE Leach
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH, United States
| | - Alena S Bruening
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH, United States
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Thomas B Thompson
- Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
4
|
Rey RA, Grinspon RP. Anti-Müllerian hormone, testicular descent and cryptorchidism. Front Endocrinol (Lausanne) 2024; 15:1361032. [PMID: 38501100 PMCID: PMC10944898 DOI: 10.3389/fendo.2024.1361032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Anti-Müllerian hormone (AMH) is a Sertoli cell-secreted glycoprotein involved in male fetal sex differentiation: it provokes the regression of Müllerian ducts, which otherwise give rise to the Fallopian tubes, the uterus and the upper part of the vagina. In the first trimester of fetal life, AMH is expressed independently of gonadotropins, whereas from the second trimester onwards AMH testicular production is stimulated by FSH and oestrogens; at puberty, AMH expression is inhibited by androgens. AMH has also been suggested to participate in testicular descent during fetal life, but its role remains unclear. Serum AMH is a well-recognized biomarker of testicular function from birth to the first stages of puberty. Especially in boys with nonpalpable gonads, serum AMH is the most useful marker of the existence of testicular tissue. In boys with cryptorchidism, serum AMH levels reflect the mass of functional Sertoli cells: they are lower in patients with bilateral than in those with unilateral cryptorchidism. Interestingly, serum AMH increases after testis relocation to the scrotum, suggesting that the ectopic position result in testicular dysfunction, which may be at least partially reversible. In boys with cryptorchidism associated with micropenis, low AMH and FSH are indicative of central hypogonadism, and serum AMH is a good marker of effective FSH treatment. In patients with cryptorchidism in the context of disorders of sex development, low serum AMH is suggestive of gonadal dysgenesis, whereas normal or high AMH is found in patients with isolated androgen synthesis defects or with androgen insensitivity. In syndromic disorders, assessment of serum AMH has shown that Sertoli cell function is preserved in boys with Klinefelter syndrome until mid-puberty, while it is affected in patients with Noonan, Prader-Willi or Down syndromes.
Collapse
Affiliation(s)
- Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas, Santa Fe, Argentina
| | - Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
5
|
Yildiz S, Moolhuijsen LME, Visser JA. The Role of Anti-Müllerian Hormone in Ovarian Function. Semin Reprod Med 2024; 42:15-24. [PMID: 38781987 DOI: 10.1055/s-0044-1786732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor β (TGFβ) superfamily, whose actions are restricted to the endocrine-reproductive system. Initially known for its role in male sex differentiation, AMH plays a role in the ovary, acting as a gatekeeper in folliculogenesis by regulating the rate of recruitment and growth of follicles. In the ovary, AMH is predominantly expressed by granulosa cells of preantral and antral follicles (i.e., post primordial follicle recruitment and prior to follicle-stimulating hormone (FSH) selection). AMH signals through a BMP-like signaling pathway in a manner distinct from other TGFβ family members. In this review, the latest insights in AMH processing, signaling, its regulation of spatial and temporal expression pattern, and functioning in folliculogenesis are summarized. In addition, effects of AMH variants on ovarian function are reviewed.
Collapse
Affiliation(s)
- Sena Yildiz
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Neves ACC, Prado OR, Blaschi W, Barreiros TRR, Deiss L, Lahoz B, Folch J, Alabart JL, de Morais RN, de Camargo Campos L, Monteiro ALG. ANTI-MULLERIAN HORMONE AS A PREDICTIVE ENDOCRINE MARKER FOR SELECTION OF WHITE DORPER EWE LAMBS AT PREPUBERTAL AGE. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
7
|
Spanou CES, Wohl AP, Doherr S, Correns A, Sonntag N, Lütke S, Mörgelin M, Imhof T, Gebauer JM, Baumann U, Grobe K, Koch M, Sengle G. Targeting of bone morphogenetic protein complexes to heparin/heparan sulfate glycosaminoglycans in bioactive conformation. FASEB J 2023; 37:e22717. [PMID: 36563024 DOI: 10.1096/fj.202200904r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Bone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs. We showed that BMP-7 PD binding to the extracellular microfibril component fibrillin-1 renders the CPLXs from an open, bioactive V-shape into a closed, latent ring shape. Here, we show that specific PD interactions with heparin/heparan sulfate glycosaminoglycans (GAGs) allow to target and spatially concentrate BMP-7 and BMP-9 CPLXs in bioactive V-shape conformation. However, targeting to GAGs may be BMP specific, since BMP-10 GF and CPLX do not interact with heparin. Bioactivity assays on solid phase in combination with interaction studies showed that the BMP-7 PD protects the BMP-7 GF from inactivation by heparin. By using transmission electron microscopy, molecular docking, and site-directed mutagenesis, we determined the BMP-7 PD-binding site for heparin. Further, fine-mapping of the fibrillin-1-binding site within the BMP-7 PD and molecular modeling showed that both binding sites are mutually exclusive in the open V- versus closed ring-shape conformation. Together, our data suggest that targeting exquisite BMP PD-binding sites by extracellular protein and GAG scaffolds integrates BMP GF bioavailability in a contextual manner in development, postnatal life, and connective tissue disease.
Collapse
Affiliation(s)
- Chara E S Spanou
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Doherr
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annkatrin Correns
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Sonntag
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Colzyx AB, Lund, Sweden
| | - Thomas Imhof
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Manuel Koch
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
8
|
Abstract
Anti-Müllerian Hormone (AMH) is a secreted glycoprotein hormone with critical roles in reproductive development and regulation. Its chemical and mechanistic similarities to members of the Transforming Growth Factor β (TGF-β) family have led to its placement within this signaling family. As a member of the TGF-β family, AMH exists as a noncovalent complex of a large N-terminal prodomain and smaller C-terminal mature signaling domain. To produce a signal, the mature domain will bind to the extracellular domains of two type I and two type II receptors which results in an intracellular SMAD signal. Interestingly, as will be discussed in this review, AMH possesses several unique characteristics which set it apart from other ligands within the TGF-β family. In particular, AMH has a dedicated type II receptor, Anti-Müllerian Hormone Receptor Type II (AMHR2), making this interaction intriguing mechanistically as well as therapeutically. Further, the prodomain of AMH has remained largely uncharacterized, despite being the largest prodomain within the family. Recent advancements in the field have provided valuable insight into the molecular mechanisms of AMH signaling, however there are still many areas of AMH signaling not understood. Herein, we will discuss what is known about the biochemistry of AMH and AMHR2, focusing on recent advances in understanding the unique characteristics of AMH signaling and the molecular mechanisms of receptor engagement.
Collapse
Affiliation(s)
- James A. Howard
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Kaitlin N. Hart
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Thomas B. Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Edelsztein NY, Valeri C, Lovaisa MM, Schteingart HF, Rey RA. AMH Regulation by Steroids in the Mammalian Testis: Underlying Mechanisms and Clinical Implications. Front Endocrinol (Lausanne) 2022; 13:906381. [PMID: 35712256 PMCID: PMC9195137 DOI: 10.3389/fendo.2022.906381] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
Anti-Müllerian hormone (AMH) is a distinctive biomarker of the immature Sertoli cell. AMH expression, triggered by specific transcription factors upon fetal Sertoli cells differentiation independently of gonadotropins or sex steroids, drives Müllerian duct regression in the male, preventing the development of the uterus and Fallopian tubes. AMH continues to be highly expressed by Sertoli until the onset of puberty, when it is downregulated to low adult levels. FSH increases testicular AMH output by promoting immature Sertoli cell proliferation and individual cell expression. AMH secretion also showcases a differential regulation exerted by intratesticular levels of androgens and estrogens. In the fetus and the newborn, Sertoli cells do not express the androgen receptor, and the high androgen concentrations do not affect AMH expression. Conversely, estrogens can stimulate AMH production because estrogen receptors are present in Sertoli cells and aromatase is stimulated by FSH. During childhood, sex steroids levels are very low and do not play a physiological role on AMH production. However, hyperestrogenic states upregulate AMH expression. During puberty, testosterone inhibition of AMH expression overrides stimulation by estrogens and FSH. The direct effects of sex steroids on AMH transcription are mediated by androgen receptor and estrogen receptor α action on AMH promoter sequences. A modest estrogen action is also mediated by the membrane G-coupled estrogen receptor GPER. The understanding of these complex regulatory mechanisms helps in the interpretation of serum AMH levels found in physiological or pathological conditions, which underscores the importance of serum AMH as a biomarker of intratesticular steroid concentrations.
Collapse
Affiliation(s)
- Nadia Y. Edelsztein
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Clara Valeri
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María M. Lovaisa
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Helena F. Schteingart
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Cate RL. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Front Endocrinol (Lausanne) 2022; 13:905324. [PMID: 35721723 PMCID: PMC9201060 DOI: 10.3389/fendo.2022.905324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Over seventy years ago it was proposed that the fetal testis produces a hormone distinct from testosterone that is required for complete male sexual development. At the time the hormone had not yet been identified but was invoked by Alfred Jost to explain why the Müllerian duct, which develops into the female reproductive tract, regresses in the male fetus. That hormone, anti-Müllerian hormone (AMH), and its specific receptor, AMHR2, have now been extensively characterized and belong to the transforming growth factor-β families of protein ligands and receptors involved in growth and differentiation. Much is now known about the downstream events set in motion after AMH engages AMHR2 at the surface of specific Müllerian duct cells and initiates a cascade of molecular interactions that ultimately terminate in the nucleus as activated transcription factors. The signals generated by the AMH signaling pathway are then integrated with signals coming from other pathways and culminate in a complex gene regulatory program that redirects cellular functions and fates and leads to Müllerian duct regression.
Collapse
|