1
|
Ho WS, Yogarajah T, Mohameed JBH, Fong DY, Cheong DHJ, Wong YH, Chu JJH, Chai CLL. Mutagenesis-Guided Target Identification Reveals the Protein-Binding Domain of Nsp14 in Coronaviruses as the Target of a Labdane-Oxindole Compound. ACS Infect Dis 2025; 11:1153-1166. [PMID: 40207883 DOI: 10.1021/acsinfecdis.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The non-structural protein (nsp) 14 of coronaviruses plays an important role in maintaining the genomic stability of the virus during viral replication. This had garnered significant interest towards the identification and development of inhibitors against nsp14, specifically its exoribonuclease (ExoN) domain. However, no inhibitors have been successfully developed to date. The bioactivity of the nsp14-ExoN is governed through a complex formation with its co-factor nsp10. This provides opportunities to target the protein assembly as an antiviral modality. In this study, a labdane-oxindole compound (OX18) was identified as a promising new antiviral agent against coronaviruses. Through a combination of FRET- and BRET-based approaches, OX18 was found to target the nsp10-binding domain of nsp14. A key escape mutation to OX18 in nsp14 was also identified in our study, albeit compromising its exoribonuclease activity. To our knowledge, OX18 is the first small molecule to target the nsp14/10 protein assembly. As such, our work paves the way for the development of future inhibitors of the nsp14-ExoN with increased potency and complexity.
Collapse
Affiliation(s)
- Wei Shen Ho
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Jasmaadiyah Binte Habib Mohameed
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Deborah Yuhui Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
| | - Dorothy Hui Juan Cheong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD4 Level 5, 5 Science Drive 2, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
2
|
Jumde RP, Jézéquel G, Saramago M, Frank N, Adam S, Cunha MV, Bader CD, Gunesch AP, Köhler NM, Johannsen S, Bousis S, Pietschmann T, Matos RG, Müller R, Arraiano CM, Hirsch AKH. Dynamic Combinatorial Chemistry Unveils Nsp10 Inhibitors with Antiviral Potential Against SARS-CoV-2. Chemistry 2025; 31:e202403390. [PMID: 39676060 PMCID: PMC11739841 DOI: 10.1002/chem.202403390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The development of antiviral drugs against the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) responsible for the recent Covid-19 pandemic is crucial, as treatment options remain limited and vaccination does not prevent (re)infection. Two relatively underexplored targets of this virus are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), both essential for viral viability. The non-structural proteins Nsp14 and Nsp16 exhibit enzymatic activities for ExoN and 2'-O-MTase, respectively, especially when in complex with their co-factor protein Nsp10. The study focuses on the use of target-directed dynamic combinatorial chemistry (tdDCC) to identify binders of Nsp10, aiming to disturb the protein-protein interactions (PPI) involving Nsp10-Nsp14, as well as Nsp10-Nsp16. We synthesised the hits and evaluated them to assess Nsp10 affinity, ExoN and 2'-O-MTase activities inhibition, and antiviral activity in hCoV-229E and SARS-CoV-2-infected whole-cell settings. This study reports a novel class of ExoN and/or 2'-O-MTase inhibitors exhibiting antiviral activity against coronaviruses.
Collapse
Affiliation(s)
- Ravindra P. Jumde
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Current addressGlobal Antibiotic Research & Development Partnership (GARDP)Chemin Camille-Vidart 151202GenevaSwitzerland
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Nicolas Frank
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Sebastian Adam
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Marta V. Cunha
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Chantal D. Bader
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
| | - Antonia P. Gunesch
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Natalie M. Köhler
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
| | - Sandra Johannsen
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
| | - Thomas Pietschmann
- Institute for Experimental VirologyTwincore – Centre for Experimental and Clinical Infection ResearchFeodor-Lynen-Str. 730625HannoverGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Rute G. Matos
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAvenida da República2780-157OeirasPortugal
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI)Campus E 8.166123SaarbrückenGermany
- Saarland UniversityDepartment of PharmacyCampus E 8.166123SaarbrückenGermany
- Cluster of Excellence RESIST (EXC 2155)Hannover Medical School30625HannoverGermany
- Helmholtz International Lab for Anti-infectivesCampus E 8.166123SaarbrückenGermany
| |
Collapse
|
3
|
Thakur N, Chakraborty P, Tufariello JM, Basler CF. SARS-CoV-2 Nsp14 binds Tollip and activates pro-inflammatory pathways while downregulating interferon-α and interferon-γ receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628214. [PMID: 39713296 PMCID: PMC11661139 DOI: 10.1101/2024.12.12.628214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1). Here we demonstrate that Nsp14 exerts broader effects, activating not only NF-κB responses but also ERK, p38 and JNK MAP kinase (MAPK) signaling, promoting cytokine production. Further, Nsp14 downregulates not only IFNAR1 but also IFN-γ receptor 1 (IFNGR1), impairing cellular responses to both IFNα and IFNγ. IFNAR1 and IFNGR1 downregulation is via a lysosomal pathway and also occurs in SARS-CoV-2 infected cells. Analysis of a panel of Nsp14 mutants reveals a consistent pattern. Mutants that disable ExoN function remain active, whereas N7-MTase mutations impair both pro-inflammatory pathway activation and IFN receptor downregulation. Innate immune modulating functions also require the presence of both the ExoN and N7-MTase domains likely reflecting the need for the ExoN domain for N7-MTase activity. We further identify multi-functional host protein Tollip as an Nsp14 interactor. Interaction requires the phosphoinositide-binding C2 domain of Tollip and sequences C-terminal to the C2 domain. Full length Tollip or regions encompassing the Nsp14 interaction domain are sufficient to counteract both Nsp14-mediated and Nsp14-independent activation of NF-κB. Knockdown of Tollip partially reverses IFNAR1 and IFNGR1 downregulation in SARS-CoV-2 infected cells, suggesting relevance of Nsp14-Tollip interaction for Nsp14 innate immune evasion functions.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Poushali Chakraborty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - JoAnn M. Tufariello
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
Matsuda A, Plewka J, Rawski M, Mourão A, Zajko W, Siebenmorgen T, Kresik L, Lis K, Jones A, Pachota M, Karim A, Hartman K, Nirwal S, Sonani R, Chykunova Y, Minia I, Mak P, Landthaler M, Nowotny M, Dubin G, Sattler M, Suder P, Popowicz G, Pyrć K, Czarna A. Despite the odds: formation of the SARS-CoV-2 methylation complex. Nucleic Acids Res 2024; 52:6441-6458. [PMID: 38499483 PMCID: PMC11194070 DOI: 10.1093/nar/gkae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.
Collapse
Affiliation(s)
- Alex Matsuda
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Kraków, Poland
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Michał Rawski
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - André Mourão
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | - Leanid Kresik
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kinga Lis
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Faculty of Chemical Engineering and Technology, Kraków University of Technology, 31-155 Kraków, Poland
| | - Alisha N Jones
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Magdalena Pachota
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Abdulkarim Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, 44002 Erbil, Kurdistan Region, Iraq
- Department of Community Health, College of Health Technology, Cihan University-Erbil, 44001 Erbil, Kurdistan Region, Iraq
| | - Kinga Hartman
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ravi Sonani
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Yuliya Chykunova
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Igor Minia
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Markus Landthaler
- Laboratory for RNA Biology, Berlin Institute for Medical System Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Michael Sattler
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Grzegorz M Popowicz
- Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Anna Czarna
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
6
|
Hassan SS, Bhattacharya T, Nawn D, Jha I, Basu P, Redwan EM, Lundstrom K, Barh D, Andrade BS, Tambuwala MM, Aljabali AA, Hromić-Jahjefendić A, Baetas-da-Cruz W, Serrano-Aroca Á, Uversky VN. SARS-CoV-2 NSP14 governs mutational instability and assists in making new SARS-CoV-2 variants. Comput Biol Med 2024; 170:107899. [PMID: 38232455 DOI: 10.1016/j.compbiomed.2023.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the rapidly evolving RNA virus behind the COVID-19 pandemic, has spawned numerous variants since its 2019 emergence. The multifunctional Nonstructural protein 14 (NSP14) enzyme, possessing exonuclease and messenger RNA (mRNA) capping capabilities, serves as a key player. Notably, single and co-occurring mutations within NSP14 significantly influence replication fidelity and drive variant diversification. This study comprehensively examines 120 co-mutations, 68 unique mutations, and 160 conserved residues across NSP14 homologs, shedding light on their implications for phylogenetic patterns, pathogenicity, and residue interactions. Quantitative physicochemical analysis categorizes 3953 NSP14 variants into three clusters, revealing genetic diversity. This research underscoresthe dynamic nature of SARS-CoV-2 evolution, primarily governed by NSP14 mutations. Understanding these genetic dynamics provides valuable insights for therapeutic and vaccine development.
Collapse
Affiliation(s)
- Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | - Tanishta Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, IISER Berhampur Transit campus (Govt. ITI Building), Engg. School Junction, Berhampur, 760010, Odisha, India.
| | - Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah, 711302, West Bengal, India.
| | - Ishana Jha
- Department of Bioinformatics, Pondicherry University, Chinna Kalapet, Kalapet, Puducherry 605014, India.
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein 2000, 721140, South Africa; Adjunct Faculty, Woxsen School of Sciences, Woxsen University, Telangana, 500 033, India.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| | | | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172, India; Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, Department of Biological Sciences, State University of Southwest of Bahia (UESB), Jequié 45083-900, Brazil.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan.
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Wagner Baetas-da-Cruz
- Centre for Experimental Surgery, Translational Laboratory in Molecular Physiology, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Sele C, Krupinska E, Andersson Rasmussen A, Ekström S, Hultgren L, Lou J, Kozielski F, Fisher SZ, Knecht W. New insights into complex formation by SARS-CoV-2 nsp10 and nsp14. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:798-812. [PMID: 38422227 DOI: 10.1080/15257770.2024.2321600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.
Collapse
Affiliation(s)
- Céleste Sele
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Anna Andersson Rasmussen
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry and SciLifeLab, Integrated Structural Biology platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lucas Hultgren
- Swedish National Infrastructure for Biological Mass Spectrometry and SciLifeLab, Integrated Structural Biology platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Jiaqi Lou
- School of Pharmacy, University College London, London, UK
| | | | - S Zoë Fisher
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
- European Spallation Source ERIC, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Tofaute M, Weller B, Graß C, Halder H, Dohai B, Falter-Braun P, Krappmann D. SARS-CoV-2 NSP14 MTase activity is critical for inducing canonical NF-κB activation. Biosci Rep 2024; 44:BSR20231418. [PMID: 38131452 PMCID: PMC10776897 DOI: 10.1042/bsr20231418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Upon SARS-CoV-2 infection, patients with severe forms of COVID-19 often suffer from a dysregulated immune response and hyperinflammation. Aberrant expression of cytokines and chemokines is associated with strong activation of the immunoregulatory transcription factor NF-κB, which can be directly induced by the SARS-CoV-2 protein NSP14. Here, we use NSP14 mutants and generated cells with host factor knockouts (KOs) in the NF-κB signaling pathways to characterize the molecular mechanism of NSP14-induced NF-κB activation. We demonstrate that full-length NSP14 requires methyltransferase (MTase) activity to drive NF-κB induction. NSP14 WT, but not an MTase-defective mutant, is poorly expressed and inherent post-translational instability is mediated by proteasomal degradation. Binding of SARS-CoV-2 NSP10 or addition of the co-factor S-adenosylmethionine (SAM) stabilizes NSP14 and augments its potential to activate NF-κB. Using CRISPR/Cas9-engineered KO cells, we demonstrate that NSP14 stimulation of canonical NF-κB activation relies on NF-κB factor p65/RELA downstream of the NEMO/IKK complex, while c-Rel or non-canonical RelB are not required to induce NF-κB transcriptional activity. However, NSP14 overexpression is unable to induce canonical IκB kinase β (IKKβ)/NF-κB signaling and in co-immunoprecipitation assays we do not detect stable associations between NSP14 and NEMO or p65, suggesting that NSP14 activates NF-κB indirectly through its methyltransferase activity. Taken together, our data provide a framework how NSP14 can augment basal NF-κB activation, which may enhance cytokine expression in SARS-CoV-2 infected cells.
Collapse
Affiliation(s)
- Marie J. Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Benjamin Weller
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Carina Graß
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| | - Hridi Halder
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Bushra Dohai
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
9
|
Wang H, Rizvi SRA, Dong D, Lou J, Wang Q, Sopipong W, Su Y, Najar F, Agarwal PK, Kozielski F, Haider S. Emerging variants of SARS-CoV-2 NSP10 highlight strong functional conservation of its binding to two non-structural proteins, NSP14 and NSP16. eLife 2023; 12:RP87884. [PMID: 38127066 PMCID: PMC10735223 DOI: 10.7554/elife.87884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The coronavirus SARS-CoV-2 protects its RNA from being recognized by host immune responses by methylation of its 5' end, also known as capping. This process is carried out by two enzymes, non-structural protein 16 (NSP16) containing 2'-O-methyltransferase and NSP14 through its N7 methyltransferase activity, which are essential for the replication of the viral genome as well as evading the host's innate immunity. NSP10 acts as a crucial cofactor and stimulator of NSP14 and NSP16. To further understand the role of NSP10, we carried out a comprehensive analysis of >13 million globally collected whole-genome sequences (WGS) of SARS-CoV-2 obtained from the Global Initiative Sharing All Influenza Data (GISAID) and compared it with the reference genome Wuhan/WIV04/2019 to identify all currently known variants in NSP10. T12I, T102I, and A104V in NSP10 have been identified as the three most frequent variants and characterized using X-ray crystallography, biophysical assays, and enhanced sampling simulations. In contrast to other proteins such as spike and NSP6, NSP10 is significantly less prone to mutation due to its crucial role in replication. The functional effects of the variants were examined for their impact on the binding affinity and stability of both NSP14-NSP10 and NSP16-NSP10 complexes. These results highlight the limited changes induced by variant evolution in NSP10 and reflect on the critical roles NSP10 plays during the SARS-CoV-2 life cycle. These results also indicate that there is limited capacity for the virus to overcome inhibitors targeting NSP10 via the generation of variants in inhibitor binding pockets.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Syed RA Rizvi
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Danni Dong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Jiaqi Lou
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Qian Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Watanyoo Sopipong
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Yufeng Su
- College of Engineering, Design and Physical Sciences, Brunel University LondonUxbridgeUnited Kingdom
| | - Fares Najar
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
| | - Pratul K Agarwal
- High-Performance Computing Center, Oklahoma State UniversityStillwaterUnited States
- Department of Physiological Sciences, Oklahoma State UniversityStillwaterUnited States
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus K. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564067. [PMID: 38014036 PMCID: PMC10680658 DOI: 10.1101/2023.10.30.564067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Emil Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Jian Cao
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Keriann Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
11
|
Grand RJ. SARS-CoV-2 and the DNA damage response. J Gen Virol 2023; 104:001918. [PMID: 37948194 PMCID: PMC10768691 DOI: 10.1099/jgv.0.001918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is characterized by respiratory distress, multiorgan dysfunction and, in some cases, death. The virus is also responsible for post-COVID-19 condition (commonly referred to as 'long COVID'). SARS-CoV-2 is a single-stranded, positive-sense RNA virus with a genome of approximately 30 kb, which encodes 26 proteins. It has been reported to affect multiple pathways in infected cells, resulting, in many cases, in the induction of a 'cytokine storm' and cellular senescence. Perhaps because it is an RNA virus, replicating largely in the cytoplasm, the effect of SARS-Cov-2 on genome stability and DNA damage responses (DDRs) has received relatively little attention. However, it is now becoming clear that the virus causes damage to cellular DNA, as shown by the presence of micronuclei, DNA repair foci and increased comet tails in infected cells. This review considers recent evidence indicating how SARS-CoV-2 causes genome instability, deregulates the cell cycle and targets specific components of DDR pathways. The significance of the virus's ability to cause cellular senescence is also considered, as are the implications of genome instability for patients suffering from long COVID.
Collapse
Affiliation(s)
- Roger J. Grand
- Institute for Cancer and Genomic Science, The Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
13
|
De A, Bhattacharya S, Debroy B, Bhattacharya A, Pal K. Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach. In Silico Pharmacol 2023; 11:12. [PMID: 37131867 PMCID: PMC10141836 DOI: 10.1007/s40203-023-00143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), possesses an important bifunctional nonstructural protein (nsp14) with a C-terminal N7-methyltransferase (N7-MTase) domain and an N-terminal domain with exoribonuclease (ExoN) activity that is required for maintaining high-fidelity viral replication. Viruses use the error-prone replication mechanism, which results in high mutation rates, to adapt quickly to stressful situations. The efficiency with which nsp14 removes mismatched nucleotides due to the presence of ExoN activity protects viruses from mutagenesis. We investigated the pharmacological role of the phytochemicals (Baicalein, Bavachinin, Emodin, Kazinol F, Lycorine, Sinigrin, Procyanidin A2, Tanshinone IIA, Tanshinone IIB, Tomentin A, and Tomentin E) against the highly conserved nsp14 protein using docking-based computational analyses in search of new potential natural drug targets. The selected eleven phytochemicals failed to bind the active site of N7-Mtase in the global docking study, while the local docking study identified the top five phytochemicals with high binding energy scores ranging from - 9.0 to - 6.4 kcal/mol. Procyanidin A2 and Tomentin A showed the highest docking score of - 9.0 and - 8.1 kcal/mol, respectively. Local docking of isoform variants was also conducted, yielding the top five phytochemicals, with Procyanidin A1 having the highest binding energy value of - 9.1 kcal/mol. The phytochemicals were later tested for pharmacokinetics and pharmacodynamics analysis for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) which resulted in choosing Tomentin A as a potential candidate. The molecular dynamics simulations studies of nsp14 revealed significant conformational changes upon complex formation with the identified compound, implying that these phytochemicals could be used as safe nutraceuticals which will impart long-term immunological competence in the human population against CoVs. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00143-7.
Collapse
Affiliation(s)
- Arkajit De
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Somdatta Bhattacharya
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Cancer Biology Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Bishal Debroy
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Anti-Microbial Resistance Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Kuntal Pal
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Cancer Biology Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| |
Collapse
|
14
|
Chinthapatla R, Sotoudegan M, Srivastava P, Anderson TK, Moustafa I, Passow K, Kennelly S, Moorthy R, Dulin D, Feng J, Harki D, Kirchdoerfer R, Cameron C, Arnold J. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. Nucleic Acids Res 2023; 51:315-336. [PMID: 36546762 PMCID: PMC9841423 DOI: 10.1093/nar/gkac1177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Pankaj Srivastava
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas K Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Imprachim N, Yosaatmadja Y, Newman JA. Crystal structures and fragment screening of SARS-CoV-2 NSP14 reveal details of exoribonuclease activation and mRNA capping and provide starting points for antiviral drug development. Nucleic Acids Res 2023; 51:475-487. [PMID: 36546776 PMCID: PMC9841433 DOI: 10.1093/nar/gkac1207] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
NSP14 is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both activities are essential for the viral life cycle and may be targeted for anti-viral therapeutics. NSP14 forms a complex with NSP10, and this interaction enhances the nuclease but not the methyltransferase activity. We have determined the structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons with NSP14/NSP10 complexes reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. We have determined the structure of NSP14 in complex with cap analogue 7MeGpppG, and observe conformational changes within a SAM/SAH interacting loop that plays a key role in viral mRNA capping offering new insights into MTase activity. We perform an X-ray fragment screen on NSP14, revealing 72 hits bound to sites of inhibition in the ExoN and MTase domains. These fragments serve as excellent starting point tools for structure guided development of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.
Collapse
Affiliation(s)
- Nergis Imprachim
- Centre for Medicines Discovery, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Yuliana Yosaatmadja
- Centre for Medicines Discovery, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Joseph A Newman
- Centre for Medicines Discovery, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
16
|
Dangerfield T, Johnson KA. Substrate Specificity and Kinetics of RNA Hydrolysis by SARS-CoV-2 NSP10/14 Exonuclease. ACS BIO & MED CHEM AU 2022; 2:600-606. [PMID: 36570070 PMCID: PMC9718090 DOI: 10.1021/acsbiomedchemau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus that causes COVID-19, continues to evolve resistance to vaccines and existing antiviral therapies at an alarming rate, increasing the need for new direct-acting antiviral drugs. Despite significant advances in our fundamental understanding of the kinetics and mechanism of viral RNA replication, there are still open questions regarding how the proofreading exonuclease (NSP10/NSP14 complex) contributes to replication fidelity and resistance to nucleoside analogs. Through single turnover kinetic analysis, we show that the preferred substrate for the exonuclease is double-stranded RNA without any mismatches. Double-stranded RNA containing a 3'-terminal remdesivir was hydrolyzed at a rate similar to a correctly base-paired cognate nucleotide. Surprisingly, single-stranded RNA or duplex RNA containing a 3'-terminal mismatch was hydrolyzed at rates 125- and 45-fold slower, respectively, compared to the correctly base-paired double-stranded RNA. These results define the substrate specificity and rate of removal of remdesivir for the exonuclease and outline rigorous kinetic assays that could help in finding next-generation exonuclease inhibitors or nucleoside analogs that are able to evade excision. These results also raise important questions about the role of the polymerase/exonuclease complex in proofreading during viral replication. Addressing these questions through rigorous kinetic analysis will facilitate the search for desperately needed antiviral drugs to combat COVID-19.
Collapse
Affiliation(s)
- Tyler
L. Dangerfield
- Institute for Cellular and
Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, Texas 78712, United States
| | - Kenneth A. Johnson
- Institute for Cellular and
Molecular Biology, Department of Molecular Biosciences, University of Texas, 2500 Speedway, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. Int J Mol Sci 2022; 23:ijms232012649. [PMID: 36293509 PMCID: PMC9604226 DOI: 10.3390/ijms232012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.
Collapse
|
18
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
19
|
Bignon E, Monari A. Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. J Chem Inf Model 2022; 62:4261-4269. [PMID: 35982544 PMCID: PMC9437665 DOI: 10.1021/acs.jcim.2c00802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Viral infection relies on the hijacking of cellular machineries to enforce the reproduction of the infecting virus and its subsequent diffusion. In this context, the replication of the viral genome is a key step performed by specific enzymes, i.e., polymerases. The replication of SARS-CoV-2, the causative agent of the COVID-19 pandemics, is based on the duplication of its RNA genome, an action performed by the viral RNA-dependent RNA polymerase. In this contribution, by using highly demanding DFT/MM-MD computations coupled to 2D-umbrella sampling techniques, we have determined the chemical mechanisms leading to the inclusion of a nucleotide in the nascent viral RNA strand. These results highlight the high efficiency of the polymerase, which lowers the activation free energy to less than 10 kcal/mol. Furthermore, the SARS-CoV-2 polymerase active site is slightly different from those usually found in other similar enzymes, and in particular, it lacks the possibility to enforce a proton shuttle via a nearby histidine. Our simulations show that this absence is partially compensated by lysine whose proton assists the reaction, opening up an alternative, but highly efficient, reactive channel. Our results present the first mechanistic resolution of SARS-CoV-2 genome replication at the DFT/MM-MD level and shed light on its unusual enzymatic reactivity paving the way for the future rational design of antivirals targeting emerging RNA viruses.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Université
de Paris, CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
20
|
Frazier MN, Riccio AA, Wilson IM, Copeland WC, Stanley RE. Recent insights into the structure and function of coronavirus ribonucleases. FEBS Open Bio 2022; 12:1567-1583. [PMID: 35445579 PMCID: PMC9110870 DOI: 10.1002/2211-5463.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.
Collapse
Affiliation(s)
- Meredith N. Frazier
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Amanda A. Riccio
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Isha M. Wilson
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - William C. Copeland
- Genome Integrity and Structural Biology LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| | - Robin E. Stanley
- Signal Transduction LaboratoryDepartment of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthResearch Triangle ParkNCUSA
| |
Collapse
|
21
|
Zhao H, Liu J, He L, Zhang L, Yu R, Kang C. Virtual screening and molecular dynamics simulation for identification of natural antiviral agents targeting SARS-CoV-2 NSP10. Biochem Biophys Res Commun 2022; 626:114-120. [PMID: 35988295 PMCID: PMC9376029 DOI: 10.1016/j.bbrc.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
New variations of SARS-CoV-2 continue to emerge in the global pandemic, which may be resistant to at least some vaccines in COVID-19, indicating that drug and vaccine development must be continuously strengthened. NSP10 plays an essential role in SARS-CoV-2 viral life cycle. It stimulates the enzymatic activities of NSP14-ExoN and NSP16-O-MTase by the formation of NSP10/NSP14 and NSP10/NSP16 complexes. Inhibiting NSP10 can block the binding of NSP10 to NSP14 and NSP16. This study has identified potential natural NSP10 inhibitors from ZINC database. The protein druggable pocket was identified for screening candidates. Molecular docking of the selected compounds was performed and MM-GBSA binding energy was calculated. After ADMET assessment, 4 hits were obtained for favorable druggability. The analysis of site interactions suggested that the hits all had excellent binding. Molecular dynamics studies revealed that selected natural compounds stably bind to NSP10. These compounds were identified as potential leads against NSP10 for the development of strategies to combat SARS-CoV-2 replication and could serve as the basis for further studies.
Collapse
Affiliation(s)
- Huilin Zhao
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin Liu
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lei He
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lichuan Zhang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Congmin Kang
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
22
|
Chinthapatla R, Sotoudegan M, Anderson T, Moustafa IM, Passow KT, Kennelly SA, Moorthy R, Dulin D, Feng JY, Harki DA, Kirchdoerfer R, Cameron CE, Arnold JJ. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.11.503614. [PMID: 35982684 PMCID: PMC9387131 DOI: 10.1101/2022.08.11.503614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas Anderson
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A. Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert Kirchdoerfer
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Acharjee A, Stephen Kingsly J, Kamat M, Kurlawala V, Chakraborty A, Vyas P, Vaishnav R, Srivastava S. Rise of the SARS-CoV-2 Variants: can proteomics be the silver bullet? Expert Rev Proteomics 2022; 19:197-212. [PMID: 35655386 DOI: 10.1080/14789450.2022.2085564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The challenges posed by emergent strains of SARS-CoV-2 need to be tackled by contemporary scientific approaches, with proteomics playing a significant role. AREAS COVERED In this review, we provide a brief synthesis of the impact of proteomics technologies in elucidating disease pathogenesis and classifiers for the prognosis of COVID-19 and propose proteomics methodologies that could play a crucial role in understanding emerging variants and their altered disease pathology. From aiding the design of novel drug candidates to facilitating the identification of T cell vaccine targets, we have discussed the impact of proteomics methods in COVID-19 research. Techniques varied as mass spectrometry, single-cell proteomics, multiplexed ELISA arrays, high-density proteome arrays, surface plasmon resonance, immunopeptidomics, and in silico docking studies that have helped augment the fight against existing diseases were useful in preparing us to tackle SARS-CoV-2 variants. We also propose an action plan for a pipeline to combat emerging pandemics using proteomics technology by adopting uniform standard operating procedures and unified data analysis paradigms. EXPERT OPINION The knowledge about the use of diverse proteomics approaches for COVID-19 investigation will provide a framework for future basic research, better infectious disease prevention strategies, improved diagnostics, and targeted therapeutics.
Collapse
Affiliation(s)
- Arup Acharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Madhura Kamat
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Mumbai, India
| | - Vishakha Kurlawala
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Mumbai, India
| | | | - Priyanka Vyas
- Department of Biotechnology and Botany, Mahila PG Mahavidyalaya, J. N. V University, Jodhpur, India
| | - Radhika Vaishnav
- Department of Life Sciences, Ivy Tech Community College, Indianapolis, Indiana, USA
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|