1
|
Liu Z, Yang H, Huang R, Li X, Sun T, Zhu L. Vaginal mycobiome characteristics and therapeutic strategies in vulvovaginal candidiasis (VVC): differentiating pathogenic species and microecological features for stratified treatment. Clin Microbiol Rev 2025:e0028424. [PMID: 40261031 DOI: 10.1128/cmr.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
SUMMARYVulvovaginal candidiasis (VVC) is a prevalent global health burden, particularly among reproductive-aged women. Recurrent VVC affects a significant proportion of this population, presenting therapeutic challenges. The predominant pathogen, Candida albicans, opportunistically transitions from a commensal organism to a pathogen when microenvironmental conditions become dysregulated. Recently, non-albicans Candida species have gained attention for their reduced antifungal susceptibility and recurrence tendencies. Diagnosis is constrained by the limitations of conventional microbiological techniques, while emerging molecular assays offer enhanced pathogen detection yet lack established thresholds to differentiate between commensal and pathogenic states. Increasing resistance issues are encountered by traditional azole-based antifungals, necessitating innovative approaches that integrate microbiota modulation and precision medicine. Therefore, this review aims to systematically explore the pathogenic diversity, drug resistance mechanisms, and biofilm effects of Candida species. Vaginal microbiota (VMB) alterations associated with VVC were also examined, focusing on the interaction between Lactobacillus spp. and pathogenic fungi, emphasizing the role of microbial dysbiosis in disease progression. Finally, the potential therapeutic approaches for VVC were summarized, with a particular focus on the use of probiotics to modulate the VMB composition and restore a healthy microbial ecosystem as a promising treatment strategy. This review addresses antifungal resistance and adopts a microbiota-centric approach, proposing a comprehensive framework for personalized VVC management to reduce recurrence and improve patient outcomes.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaochuan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianshu Sun
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Clinical Biobank, Center for Biomedical Technology, Institute of Clinical Medicine, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Hadi AF, Arta RK, Kushima I, Egawa J, Watanabe Y, Ozaki N, Someya T. Association Analysis of Rare CNTN5 Variants With Autism Spectrum Disorder in a Japanese Population. Neuropsychopharmacol Rep 2025; 45:e12527. [PMID: 39887962 PMCID: PMC11781355 DOI: 10.1002/npr2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Contactin-5 (CNTN5), a neural adhesion molecule involved in synaptogenesis and synaptic maturation in the auditory pathway, has been associated with the pathophysiology of autism spectrum disorder (ASD), particularly hyperacusis. To investigate the role of rare CNTN5 variants in ASD susceptibility, we performed resequencing and association analysis in a Japanese population. METHODS We resequenced the CNTN5 coding regions in 302 patients with ASD and prioritized rare putatively damaging variants. The prioritized variants were then genotyped in 313 patients with ASD and 1065 controls. Subsequently, we conducted an association study of selected variants with ASD in 614 patients with ASD and 61 057 controls. Clinical data were reviewed for patients carrying prioritized variants. RESULTS Through resequencing, we prioritized three rare putatively damaging missense variants (W69G, I227L, and L1000S) in patients with ASD. Although we found a nominally significant association between the I227L variant and ASD, it did not remain significant after post hoc correction. Hyperacusis was found in three out of nine patients carrying prioritized variants. CONCLUSION This study does not provide evidence for the contribution of rare CNTN5 variants to the genetic etiology of ASD in the Japanese population.
Collapse
Affiliation(s)
- Abdul Fuad Hadi
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Reza K. Arta
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Itaru Kushima
- Department of PsychiatryNagoya University Graduate School of MedicineNagoyaAichiJapan
- Medical Genomics CenterNagoya University HospitalNagoyaAichiJapan
| | - Jun Egawa
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yuichiro Watanabe
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
- Department of PsychiatryUonuma Kikan HospitalNiigataJapan
| | - Norio Ozaki
- Pathophysiology of Mental DisordersNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Toshiyuki Someya
- Department of Psychiatry, School of Medicine, and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
3
|
Zhang Z, Chen W, Shi Z, Pan F, Wang D. Cryo-EM structures of the full-length human contactin-2. FEBS J 2025; 292:602-618. [PMID: 39702996 PMCID: PMC11796320 DOI: 10.1111/febs.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Contactin-2 (CNTN2), an immunoglobulin cell adhesion molecule (IgCAM) expressed on the neural cell surface, regulates the formation of myelin sheaths, facilitates communication between neurons and axoglial cells, and coordinates the migration of neural cells. However, the assembly of full-length CNTN2 is still not fully elucidated. Here, we found that the full-length human CNTN2 forms a concentration-dependent homodimer. We further determined the cryo-EM structures of the full-length CNTN2, revealing a novel bowknot-shaped scaffold constituted of the Ig1-6 repeats from two protomers, with the flexible ribbon-like FNIII repeats extending outward in opposite directions. The Ig1-6 domains, rather than the previously proposed Ig1-4 domains, have an indispensable role in mediating CNTN2-dependent cell adhesion and clustering. Moreover, structure-guided mutagenesis analyses supported the idea that CNTN2 homodimerization observed in our structure is essential for cell adhesion. Our findings offer novel insights into the mechanism through which CNTN2 forms a homodimer to maintain cell-cell contacts in the nervous system.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiangChina
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Fan Pan
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Daping Wang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
4
|
Muqaku B, Anderl-Straub S, Werner L, Nagl M, Otto M, Teunissen CE, Oeckl P. Contactin proteins in cerebrospinal fluid show different alterations in dementias. J Neurol 2024; 271:7516-7524. [PMID: 39317877 PMCID: PMC11588959 DOI: 10.1007/s00415-024-12694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The proteins contactin (CNTN) 1-6 are synaptic proteins for which there is evidence that they are dysregulated in neurodegenerative dementias. Less is known about CNTN changes and differences in cerebrospinal fluid (CSF) of dementias, which can provide important information about alterations of the CNTN network and be of value for differential diagnosis. METHODS We developed a mass spectrometry-based multiple reaction monitoring (MRM) method to simultaneously determine all six CNTNs in CSF samples using stable isotope-labeled standard peptides. The analytical performance of the method was evaluated for peptide stability, dilution linearity and precision. CNTNs were measured in 82 CSF samples from patients with Alzheimer's disease (AD, n = 19), behavioural variant frontotemporal dementia (bvFTD, n = 18), Parkinson's disease dementia/dementia with Lewy bodies (PDD/DLB, n = 18) and non-neurodegenerative controls (n = 27) and compared with core AD biomarkers. RESULTS The MRM analysis revealed down-regulation of CNTN2 (fold change (FC) = 0.77), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.67) in bvFTD and CNTN3 (FC = 0.72), CNTN4 (FC = 0.75) and CNTN5 (FC = 0.73) in PDD/DLB compared to AD. CNTN levels strongly correlated with each other in controls (r = 0.73), bvFTD (r = 0.86) and PDD/DLB (r = 0.70), but the correlation was significantly lower in AD (r = 0.41). CNTNs in AD did not show correlation even with core AD biomarkers. Combined use of CNTN1-6 levels increased diagnostic performance of AD core biomarkers. CONCLUSIONS Our data show CNTNs differentially altered in dementias and indicate CNTN homeostasis being selectively dysregulated in AD. The combined use of CNTNs with AD core biomarkers might help to improve differential diagnosis.
Collapse
Affiliation(s)
- Besnik Muqaku
- German Center for Neurodegenerative Diseases (DZNE E.V.), Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sarah Anderl-Straub
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Leonie Werner
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Magdalena Nagl
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (UMC), Amsterdam, The Netherlands
| | - Patrick Oeckl
- German Center for Neurodegenerative Diseases (DZNE E.V.), Helmholtzstr. 8/1, 89081, Ulm, Germany.
- Department of Neurology, Ulm University Hospital, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
6
|
Chau DDL, Ng LLH, Zhai Y, Lau KF. Amyloid precursor protein and its interacting proteins in neurodevelopment. Biochem Soc Trans 2023; 51:1647-1659. [PMID: 37387352 PMCID: PMC10629809 DOI: 10.1042/bst20221527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Amyloid precursor protein (APP) is a key molecule in the pathogenesis of Alzheimer's disease (AD) as the pathogenic amyloid-β peptide is derived from it. Two closely related APP family proteins (APPs) have also been identified in mammals. Current knowledge, including genetic analyses of gain- and loss-of-function mutants, highlights the importance of APPs in various physiological functions. Notably, APPs consist of multiple extracellular and intracellular protein-binding regions/domains. Protein-protein interactions are crucial for many cellular processes. In past decades, many APPs interactors have been identified which assist the revelation of the putative roles of APPs. Importantly, some of these interactors have been shown to influence several APPs-mediated neuronal processes which are found defective in AD and other neurodegenerative disorders. Studying APPs-interactor complexes would not only advance our understanding of the physiological roles of APPs but also provide further insights into the association of these processes to neurodegeneration, which may lead to the development of novel therapies. In this mini-review, we summarize the roles of APPs-interactor complexes in neurodevelopmental processes including neurogenesis, neurite outgrowth, axonal guidance and synaptogenesis.
Collapse
Affiliation(s)
- Dennis Dik-Long Chau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuqi Zhai
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Sinha A, Kawakami J, Cole KS, Ladutska A, Nguyen MY, Zalmai MS, Holder BL, Broerman VM, Matthews RT, Bouyain S. Protein-protein interactions between tenascin-R and RPTPζ/phosphacan are critical to maintain the architecture of perineuronal nets. J Biol Chem 2023; 299:104952. [PMID: 37356715 PMCID: PMC10371798 DOI: 10.1016/j.jbc.2023.104952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.
Collapse
Affiliation(s)
- Ashis Sinha
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Jessica Kawakami
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Kimberly S Cole
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Aliona Ladutska
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mary Y Nguyen
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Mary S Zalmai
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Brandon L Holder
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Victor M Broerman
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| | - Samuel Bouyain
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
| |
Collapse
|
8
|
Bizzoca A, Jirillo E, Flace P, Gennarini G. Overall Role of Contactins Expression in Neurodevelopmental Events and Contribution to Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1176-1193. [PMID: 36515028 DOI: 10.2174/1871527322666221212160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neurodegenerative disorders may depend upon a misregulation of the pathways which sustain neurodevelopmental control. In this context, this review article focuses on Friedreich ataxia (FA), a neurodegenerative disorder resulting from mutations within the gene encoding the Frataxin protein, which is involved in the control of mitochondrial function and oxidative metabolism. OBJECTIVE The specific aim of the present study concerns the FA molecular and cellular substrates, for which available transgenic mice models are proposed, including mutants undergoing misexpression of adhesive/morphoregulatory proteins, in particular belonging to the Contactin subset of the immunoglobulin supergene family. METHODS In both mutant and control mice, neurogenesis was explored by morphological/morphometric analysis through the expression of cell type-specific markers, including b-tubulin, the Contactin-1 axonal adhesive glycoprotein, as well as the Glial Fibrillary Acidic Protein (GFAP). RESULTS Specific consequences were found to arise from the chosen misexpression approach, consisting of a neuronal developmental delay associated with glial upregulation. Protective effects against the arising phenotype resulted from antioxidants (essentially epigallocatechin gallate (EGCG)) administration, which was demonstrated through the profiles of neuronal (b-tubulin and Contactin 1) as well as glial (GFAP) markers, in turn indicating the concomitant activation of neurodegeneration and neuro repair processes. The latter also implied activation of the Notch-1 signaling. CONCLUSION Overall, this study supports the significance of changes in morphoregulatory proteins expression in the FA pathogenesis and of antioxidant administration in counteracting it, which, in turn, allows to devise potential therapeutic approaches.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Medical School, University of Bari, Piazza Giulio Cesare, 11. Bari I-70124, Italy
| |
Collapse
|
9
|
Dauar MT, Labonté A, Picard C, Miron J, Rosa-Neto P, Zetterberg H, Blennow K, Villeneuve S, Poirier J. Characterization of the contactin 5 protein and its risk-associated polymorphic variant throughout the Alzheimer's disease spectrum. Alzheimers Dement 2022. [PMID: 36583624 DOI: 10.1002/alz.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We investigate the CNTN5 rs1461684 G variant and the contactin 5 protein in sporadic Alzheimer's disease (sAD). METHODS Contactin 5, sAD biomarkers, and synaptic markers were measured in the cerebrospinal fluid (CSF). Amyloid and tau deposition were assessed using positron emission tomography. Contactin 5 protein and mRNA levels were measured in brain tissue. RESULTS CSF contactin 5 increases progressively in cognitively unimpaired individuals and is decreased in mild cognitive impairment and sAD. CSF contactin 5 correlates with sAD biomarkers and with synaptic markers. The rs1461684 G variant associates with faster disease progression in cognitively unimpaired subjects. Cortical full-length and isoform 3 CNTN5 mRNAs are decreased in the presence of the G allele and as a function of Consortium to Establish a Registry for Alzheimer's Disease stages. DISCUSSION The newly identified rs1461684 G variant associates with sAD risk, rate of disease progression, and gene expression. Contactin 5 protein and mRNA are affected particularly in the early stages of the disease.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
10
|
Chataigner LMP, Gogou C, den Boer MA, Frias CP, Thies-Weesie DME, Granneman JCM, Heck AJR, Meijer DH, Janssen BJC. Structural insights into the contactin 1 - neurofascin 155 adhesion complex. Nat Commun 2022; 13:6607. [PMID: 36329006 PMCID: PMC9633819 DOI: 10.1038/s41467-022-34302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christos Gogou
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maurits A. den Boer
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cátia P. Frias
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dominique M. E. Thies-Weesie
- grid.5477.10000000120346234Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joke C. M. Granneman
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dimphna H. Meijer
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bert J. C. Janssen
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|