1
|
Lyu Z, Takaramoto S, Inoue K. Weak Organic Acid Effect of Bacterial Light-Driven Proton-Pumping Rhodopsin. J Phys Chem B 2025; 129:3198-3206. [PMID: 40104969 DOI: 10.1021/acs.jpcb.4c06891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Microbial rhodopsins are photoreceptor proteins that utilize light to elicit various biological functions. The best-studied microbial rhodopsins are outward proton (H+)-pumping rhodopsins, which transport H+ from the cytoplasmic to the extracellular side. Recently, the weak organic acid (WOA) effect, specifically the enhancement of pumping activity by WOAs such as acetic acid and indole-3-acetic acid (IAA), was discovered in outward H+-pumping rhodopsins from fungi. However, it remains unclear whether the WOA effect exists in nonfungal H+-pumping rhodopsins. Here, we revealed that the H+-pumping activity of a bacterial outward H+ pump rhodopsin, PspR, from the rhizobacterium Pseudomonas putida, is also enhanced by extracellular acetic acid and IAA. Using transient absorption measurements on purified PspR protein, we found that extracellular WOAs accelerate cytoplasmic H+ uptake and extracellular H+ release from a protonated counterion during its photocycle. Furthermore, acetic acid applied on the cytoplasmic side has an inhibitory effect on the H+ pump activity of PspR, which is less significant for IAA and can be mitigated by increasing the H+ concentration or introducing a cytoplasmic donor residue. These findings on the WOA effect in a bacterial rhodopsin provide new insights into the physiological function of outward H+-pumping rhodopsins in bacteria, particularly in their interaction with plants.
Collapse
Affiliation(s)
- Zikun Lyu
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shunki Takaramoto
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
2
|
Ishizuka T, Suzuki K, Konno M, Shibata K, Kawasaki Y, Akiyama H, Murata T, Inoue K. Light-driven anion-pumping rhodopsin with unique cytoplasmic anion-release mechanism. J Biol Chem 2024; 300:107797. [PMID: 39305959 PMCID: PMC11532467 DOI: 10.1016/j.jbc.2024.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/14/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Microbial rhodopsins are photoreceptive membrane proteins found in microorganisms with an all-trans-retinal chromophore. The function of many microbial rhodopsins is determined by three residues in the third transmembrane helix called motif residues. Here, we report a group of microbial rhodopsins with a novel Thr-Thr-Gly (TTG) motif. The ion-transport assay revealed that they function as light-driven inward anion pumps similar to halorhodopsins previously found in archaea and bacteria. Based on the characteristic glycine residue in their motif and light-driven anion-pumping function, these new rhodopsins are called glycylhalorhodopsins (GHRs). X-ray crystallographic analysis found large cavities on the cytoplasmic side, which are produced by the small side-chain volume of the glycine residue in the motif. The opened structure of GHR on the cytoplasmic side is related to the anion releasing process to the cytoplasm during the photoreaction compared to canonical halorhodopsin from Natronomonas pharaonis (NpHR). GHR also transports SO42- and the extracellular glutamate residue plays an essential role in extracellular SO42- uptake. In summary, we have identified TTG motif-containing microbial rhodopsins that display an anion-releasing mechanism.
Collapse
Affiliation(s)
- Tomohiro Ishizuka
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Keisei Shibata
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Yuma Kawasaki
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Hidefumi Akiyama
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Chiba, Japan.
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
3
|
Marín MDC, Konno M, Yawo H, Inoue K. Converting a Natural-Light-Driven Outward Proton Pump Rhodopsin into an Artificial Inward Proton Pump. J Am Chem Soc 2023; 145:10938-10942. [PMID: 37083435 DOI: 10.1021/jacs.2c12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Microbial rhodopsins are a large family of photoreceptive membrane proteins with diverse light-regulated functions. While the most ubiquitous microbial rhodopsins are light-driven outward proton (H+) pumps, new subfamilies of microbial rhodopsins transporting H+ inwardly, i.e., light-driven inward H+ pumps, have been discovered recently. Although structural and spectroscopic studies provide insights into their ion transport mechanisms, the minimum key element(s) that determine the direction of H+ transport have not yet been clarified. Here, we conducted the first functional conversion study by substituting key amino acids in a natural outward H+-pumping rhodopsin (PspR) with those in inward H+-pumping rhodopsins. Consequently, an artificial inward H+ pump was constructed by mutating only three residues of PspR. This result indicates that these residues govern the key processes that discriminate between outward and inward H+ pumps. Spectroscopic studies revealed the presence of an inward H+-accepting residue in the H+ transport pathway and direct H+ uptake from the extracellular solvent. This finding of the simple element for determining H+ transport would provide a new basis for understanding the concept of ion transport not only by microbial rhodopsins but also by other ion-pumping proteins.
Collapse
Affiliation(s)
- María Del Carmen Marín
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Masae Konno
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
4
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Complete Genome of Sphingomonas aerolata PDD-32b-11, Isolated from Cloud Water at the Summit of Puy de Dôme, France. Microbiol Resour Announc 2022; 11:e0068422. [PMID: 36106890 PMCID: PMC9584328 DOI: 10.1128/mra.00684-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of
Sphingomonas aerolata
PDD-32b-11, a bacterium isolated from cloud water, was sequenced. It features four circular replicons, a chromosome of 3.99 Mbp, and three plasmids. Two putative rhodopsin-encoding genes were detected which might act as proton pumps to harvest light energy.
Collapse
|
6
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|