1
|
Falcioni R, Antunes WC, de Oliveira RB, Chicati ML, Demattê JAM, Nanni MR. Comparative Insights into Photosynthetic, Biochemical, and Ultrastructural Mechanisms in Hibiscus and Pelargonium Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2831. [PMID: 39409701 PMCID: PMC11478917 DOI: 10.3390/plants13192831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus (Hibiscus rosa-sinensis L.) and Pelargonium (Pelargonium zonale (L.) L'Hér. Ex Aiton) plants. The data collection encompassed daily photosynthetic profiles, responses to light and CO2, leaf optical properties, fluorescence data (OJIP transients), biochemical analyses, and anatomical observations. The findings reveal distinct morphological, optical, and biochemical adaptations between the two species. These adaptations were associated with differences in photochemical (AMAX, E, Ci, iWUE, and α) and carboxylative parameters (VCMAX, ΓCO2, gs, gm, Cc, and AJMAX), along with variations in fluorescence and concentrations of chlorophylls and carotenoids. Such factors modulate the efficiency of photosynthesis. Energy dissipation mechanisms, including thermal and fluorescence pathways (ΦPSII, ETR, NPQ), and JIP test-derived metrics highlighted differences in electron transport, particularly between PSII and PSI. At the ultrastructural level, Hibiscus exhibited optimised cellular and chloroplast architecture, characterised by increased chloroplast density and robust grana structures. In contrast, Pelargonium displayed suboptimal photosynthetic parameters, possibly due to reduced thylakoid counts and a higher proportion of mitochondria. In conclusion, while Hibiscus appears primed for efficient photosynthesis and energy storage, Pelargonium may prioritise alternative cellular functions, engaging in a metabolic trade-off.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| | - José Alexandre M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, São Paulo, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil; (W.C.A.); (R.B.d.O.); (M.L.C.); (M.R.N.)
| |
Collapse
|
2
|
Ying S, Webster B, Gomez-Cano L, Shivaiah KK, Wang Q, Newton L, Grotewold E, Thompson A, Lundquist PK. Multiscale physiological responses to nitrogen supplementation of maize hybrids. PLANT PHYSIOLOGY 2024; 195:879-899. [PMID: 37925649 PMCID: PMC11060684 DOI: 10.1093/plphys/kiad583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multiscale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.
Collapse
Affiliation(s)
- Sheng Ying
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Brandon Webster
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey Newton
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Erich Grotewold
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Addie Thompson
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Cisse EHM, Jiang BH, Yin LY, Miao LF, Zhou JJ, Mekontso FN, Li DD, Xiang LS, Yang F. Dalbergia odorifera undergoes massive molecular shifts in response to waterlogging combined with salinity. PLANT PHYSIOLOGY 2024; 194:2301-2321. [PMID: 38048404 PMCID: PMC10980518 DOI: 10.1093/plphys/kiad639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 12/06/2023]
Abstract
Field and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern of the transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shutdown of the photosynthetic apparatus and the extensive degradation of starch into saccharides through α-amylase, β-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stresses led to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.
Collapse
Affiliation(s)
- El-Hadji Malick Cisse
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Bai-Hui Jiang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Ling-Feng Miao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Plant Protection, Hainan University, Haikou 570228, China
| | - Jing-Jing Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | | | - Da-Dong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Li-Shan Xiang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Fan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Zorina AA, Novikova GV, Gusev NB, Leusenko AV, Los DA, Klychnikov OI. SpkH (Sll0005) from Synechocystis sp. PCC 6803 is an active Mn 2+-dependent Ser kinase. Biochimie 2023; 213:114-122. [PMID: 37209809 DOI: 10.1016/j.biochi.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Twelve genes for the potential serine-threonine protein kinases (STPKs) have been annotated in the genome of Synechocystis sp. PCC 6803. Based on similarities and distinctive domain organization, they were divided into two clusters: serine/threonine-protein N2-like kinases (PKN2-type) and "activity of bc1 complex" kinases (ABC1-type). While the activity of the PKN2-type kinases have been demonstrated, no ABC1-type kinases activity have hitherto been reported. In this study, a recombinant protein previously annotated as a potential STPK of ABC1-type (SpkH, Sll0005) was expressed and purified to homogeneity. We demonstrated SpkH phosphorylating activity and substrate preference for casein in in vitro assays using [γ-32P]ATP. Detailed analyses of activity showed that Mn2+ had the strongest activation effect. The activity of SpkH was significantly inhibited by heparin and spermine, but not by staurosporine. By means of semi-quantitative mass-spectrometric detection of phosphopeptides, we identified a consensus motif recognized by this kinase - X1X2pSX3E. Thus, we first report here that SpkH of Synechocystis represents a true active serine protein kinase, which shares the properties of casein kinases according to its substrate specificity and sensitivity to some activity effectors.
Collapse
Affiliation(s)
- A A Zorina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - G V Novikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - N B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - D A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - O I Klychnikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
5
|
Espinoza‐Corral R, Schwenkert S, Schneider A. Characterization of the preferred cation cofactors of chloroplast protein kinases in Arabidopsis thaliana. FEBS Open Bio 2023; 13:511-518. [PMID: 36683405 PMCID: PMC9989932 DOI: 10.1002/2211-5463.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Chloroplasts sense a variety of stimuli triggering several acclimation responses. One prominent response is the mechanism of state transitions, which enables rapid adaption to changes in illumination. Here, we investigated the link between divalent cations (calcium, magnesium, and manganese) and protein kinase activity in Arabidopsis chloroplasts. Our results show that manganese ions are the strongest activator of kinase activity in chloroplasts followed by magnesium ions, whereas calcium ions are not able to induce kinase activity. Additionally, the phosphorylation of specific protein bands is strongly reduced in chloroplasts of a cmt1 mutant, which is impaired in manganese import into chloroplasts, as compared to the wild-type. These findings provide insights for the future characterization of chloroplast protein kinase activity and potential target proteins.
Collapse
Affiliation(s)
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of BiologyLudwig Maximilians University MunichPlaneggGermany
| | - Anja Schneider
- Plant Molecular Biology, Faculty of BiologyLudwig Maximilians University MunichPlaneggGermany
| |
Collapse
|
6
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|