1
|
Wang J, Jiang Y, Yuan Y, Ma X, Li T, Lv Y, Zhang J, Chen L, Zhou J, Meng Y, Zhang B, Dong X, Ma L. Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway. Infect Drug Resist 2025; 18:185-197. [PMID: 39807206 PMCID: PMC11727329 DOI: 10.2147/idr.s499643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Aim Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction. The objective of this study is to elucidate the mechanism underlying the impact of miR-122-5p on sepsis-associated liver and kidney injury using inhibitors for miR-122-5p as well as GW4869, an inhibitor targeting exosome release. Materials and Methods Exosomes were isolated from serum samples of septic rats, sepsis patients, and control groups, while liver and kidney tissues were collected for subsequent analysis. The levels of miR-122-5p, inflammation indices, and organ damage were assessed using PCR, ELISA, and pathological identification techniques. Immunohistochemistry and Western blotting methods were employed to investigate the activation of inflammatory pathways. Furthermore, big data analysis was utilized to screen potential targets of miR-122-5p in vivo. Key Findings Serum exosomal levels of miR-122-5p were significantly elevated in septic patients as well as in LPS-induced septic rats. Inhibition of miR-122-5p reduced serum pro-inflammatory factors and ameliorated liver and kidney damage in septic rats. Mechanistically, miR-122-5p upregulated TAK1, downregulated SIRT1, and facilitated NF-κB activation. Conclusion Serum exosomal miR-122-5p promotes inflammation and induces liver/kidney injury in LPS-induced septic rats by modulating the TAK1/SIRT1/NF-κB pathway, highlighting potential therapeutic targets for sepsis management.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yujing Jiang
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yamin Yuan
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Xin Ma
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Tongqin Li
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - YaTing Lv
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Jing Zhang
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Liao Chen
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Jinquan Zhou
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Yanfei Meng
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Bei Zhang
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Xiaorong Dong
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| | - Li Ma
- Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
2
|
Wang B, Liu X, Li C, Yang N. LncRNA (BCO1-AS) regulate inflammatory responses in bacterial infection through caspase-1 in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 279:135131. [PMID: 39208888 DOI: 10.1016/j.ijbiomac.2024.135131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
LncRNA plays key role in several biological processes, including transcriptional regulation, post transcriptional control and epigenetic regulation. However, research on the functional roles of lncRNAs in teleost species remains limited. Here, we discovered a lncRNA (BCO1-AS) with a critical role in antibacterial responses. Briefly, the full length of BCO1-AS was 2005 bp. Subsequently, BCO1-AS was distributed throughout the nucleus, where it may either trans- or cis-regulate the nearby genes. In addition, BCO1-AS was widely expressed in all the examined tissues with the highest expression level in intestine, while the lowest expression level was detected in muscle. Moreover, following Vibrio anguillarum challenge, BCO1-AS was significantly down-regulated in intestine, and up-regulated in gill and skin. In CHIRP experiment, BCO1-AS could effectively enrich RNA and might interact with several immune-related genes. Furthermore, we found that LPS could induce the expression of BCO1-AS. Finally, BCO1-AS could positively regulate caspase-1 at the mRNA and protein level. The BCO1-AS was speculated to inhibit the synthesis of inflammatory components. In summary, these results showed the roles of BCO1-AS in the regulation of inflammatory in turbot, which provided valuable information for further understanding the immune regulation network of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
3
|
Li H, Jiang X, Zhang S, Li Y, Wang X, Liang J. MiR-214_L-1R+4 regulate gossypol-induced immune response through MyD88-dependent signaling pathway in Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109744. [PMID: 38960107 DOI: 10.1016/j.fsi.2024.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.
Collapse
Affiliation(s)
- Hui Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China.
| | - Xinyu Jiang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Shuying Zhang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Yanling Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| |
Collapse
|
4
|
Zhao Y, Gu J, Wu R, Liu B, Dong P, Yu G, Zhao D, Li G, Yang Z. Characteristics of conserved microRNAome and their evolutionary adaptation to regulation of immune defense functions in the spleen of silver carp and bighead carp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109312. [PMID: 38122951 DOI: 10.1016/j.fsi.2023.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Immune defense functions of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) have shown obvious evolutionary divergence. MiRNAs participate in the fine regulation of immune function. However, the evolutionary adaptation of miRNAs in the regulation of immune defense function is still poorly understood in silver carp and bighead carp. Here, small RNA libraries were constructed from the spleen tissue of one-year-old and three-year-old healthy silver carp and bighead carp, 424 and 422 known conserved miRNAs were respectively identified from the spleen of silver carp and bighead carp by bioinformatic analysis, which 398 were shared between the two species. These conserved miRNAs showed highly similar expression patterns between silver carp and bighead carp, but the abundance in spleen varied greatly in different species. Family analysis showed that miRNA families including mir-8, mir-7, mir-23, mir-338, mir-30, mir-27, mir-221, mir-19, mir-181, mir-17, mir-15, mir-148, mir-130, mir-10 and let-7 were the main miRNAs in the spleen of silver carp and bighead carp. 27 and 51 significant differentially expressed (SDE) miRNAs were identified from silver carp and bighead carp, respectively. Evolution analysis for the predicted target genes of SDE-miRNAs showed that ten biological processes such as blood coagulation, cell adhesion mediated by integrin and adaptive immune response were positively selected. In addition, immune genes including TLR3, NFATC3, MALT1, B2M, GILT and MHCII were positively selected only in silver carp, and they were specifically targeted by the SDE-miRNAs including miR-9-5p, miR-196a-5p, miR-375, miR-122, miR-722, miR-132-3p, miR-727-5p, miR-724, miR-19d-5p and miR-138-5p, respectively. PLA2G4 in Fc epsilon RI signaling pathway was positively selected only in bighead carp and was specifically targeted by the SDE-miRNAs including miR-222b, miR-22b-5p, miR-15c, miR-146a, miR-125c-3p, miR-221-5p, miR-2188-5p, miR-142a-3p, miR-212, miR-138-5p and miR-15b-5p. In particular, SDE-miRNAs such as miR-144-3p, miR-2188-3p, miR-731, miR-363-3p and miR-218b could simultaneously target multiple evolutionarily differentiated immune-related genes. These results indicated that in the spleen of silver carp and bighead carp, conserved miRNAs have obvious evolutionary adaptations in the regulation of immune defense function. The results of this study can provide valuable resources for further revealing themechanism of miRNA in the formation of resistance traits evolution between silver carp and bighead carp.
Collapse
Affiliation(s)
- Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zheng Zhou, Henan Province, 450001, PR China.
| | - Jinxing Gu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Ran Wu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Pengsheng Dong
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Daoquan Zhao
- Research Station for Field Scientific Observation of Aquatic Organisms in Yiluo River, Yellow River Basin, Lushi, Henan Province, 472200, PR China.
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| | - Zhenjiang Yang
- College of Animal Science and Technology, Henan Agricultural University, Zheng Zhou, Henan Province, 450046, PR China.
| |
Collapse
|
5
|
Abd-Elmawla MA, Elsabagh YA, Aborehab NM. Association of XIST/miRNA155/Gab2/TAK1 cascade with the pathogenesis of anti-phospholipid syndrome and its effect on cell adhesion molecules and inflammatory mediators. Sci Rep 2023; 13:18790. [PMID: 37914735 PMCID: PMC10620142 DOI: 10.1038/s41598-023-45214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Anti-phospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and miscarriage events. Still, the molecular mechanisms underlying APS, which predisposes to a wide spectrum of complications, are being explored. Seventy patients with primary and secondary APS were recruited, in addition to 35 healthy subjects. Among APS groups, the gene expression levels of XIST, Gab2, and TAK1 were higher along with declined miRNA155 level compared with controls. Moreover, the sera levels of ICAM-1, VCAM-1, IL-1ꞵ, and TNF-α were highly elevated among APS groups either primary or secondary compared with controls. The lncRNA XIST was directly correlated with Gab2, TAK1, VCAM-1, ICAM-1, IL-1ꞵ, and TNF-α. The miRNA155 was inversely correlated with XIST, Gab2, and TAK1. Moreover, ROC curve analyses subscribed the predictive power of the lncRNA XIST and miRNA155, to differentiate between primary and secondary APS from control subjects. The lncRNA XIST and miRNA155 are the upstream regulators of the Gab2/TAK1 axis among APS patients via influencing the levels of VCAM-1, ICAM-1, IL1ꞵ, and TNF-α which propagates further inflammatory and immunological streams. Interestingly, the study addressed that XIST and miRNA155 may be responsible for the thrombotic and miscarriage events associated with APS and provides new noninvasive molecular biomarkers for diagnosing the disease and tracking its progression.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Yumn A Elsabagh
- Internal Medicine Department (Rheumatology and Clinical Immunology Unit), Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
6
|
Abdellaoui N, Kim SY, Kim MS. Effect of TRAF6-knockout on gene expression and lncRNA expression in Epithelioma papulosum cyprini (EPC) cells. Anim Cells Syst (Seoul) 2023; 27:197-207. [PMID: 37808550 PMCID: PMC10552615 DOI: 10.1080/19768354.2023.2263070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
TRAF6 is a key immune gene that plays a significant role in toll-like receptor signal transduction and activates downstream immune genes involved in antiviral immunity in fish. To explore the role of TRAF6 in Epithelioma papulosum cyprini (EPC) cells, we knocked out the TRAF6 gene using the Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 (CRISPR-Cas9) technique and then analyzed the transcriptomes of the knockout cells. In this study, we identified that 232 transcripts were differentially expressed in naive cells. Using the pipeline, we identified 381 novel lncRNAs in EPC cells, 23 of which were differentially expressed. Gene Ontology enrichment analysis demonstrated that differentially expressed genes (DEG) are implicated in various immune processes, such as neutrophil chemotaxis and mitogen-activated protein kinase binding. In addition, the KEGG pathway analysis revealed enrichment in immune-related pathways (Interleukin-17 signaling pathway, cytokine-cytokine receptor interaction, and TNF signaling pathway). Furthermore, the target genes of the differentially expressed lncRNAs were implicated in the negative regulation of interleukin-6 and tumor necrosis factor production. These results indicate that lncRNAs and protein-coding genes participate in the regulation of immune and metabolic processes in fish.
Collapse
Affiliation(s)
- Najib Abdellaoui
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Seon Young Kim
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
- BK21 Team for Field-oriented BioCore Human Resources Development, Kongju National University, Gongju, South Korea
| |
Collapse
|
7
|
Mirzaei R, Karampoor S, Korotkova NL. The emerging role of miRNA-122 in infectious diseases: Mechanisms and potential biomarkers. Pathol Res Pract 2023; 249:154725. [PMID: 37544130 DOI: 10.1016/j.prp.2023.154725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
microRNAs (miRNAs) are small, non-coding RNA molecules that play crucial regulatory roles in numerous cellular processes. Recent investigations have highlighted the significant involvement of miRNA-122 (miR-122) in the pathogenesis of infectious diseases caused by diverse pathogens, encompassing viral, bacterial, and parasitic infections. In the context of viral infections, miR-122 exerts regulatory control over viral replication by binding to the viral genome and modulating the host's antiviral response. For instance, in hepatitis B virus (HBV) infection, miR-122 restricts viral replication, while HBV, in turn, suppresses miR-122 expression. Conversely, miR-122 interacts with the hepatitis C virus (HCV) genome, facilitating viral replication. Regarding bacterial infections, miR-122 has been found to regulate host immune responses by influencing inflammatory cytokine production and phagocytosis. In Vibrio anguillarum infections, there is a significant reduction in miR-122 expression, contributing to the pathophysiology of bacterial infections. Toll-like receptor 14 (TLR14) has been identified as a novel target gene of miR-122, affecting inflammatory and immune responses. In the context of parasitic infections, miR-122 plays a crucial role in regulating host lipid metabolism and immune responses. For example, during Leishmania infection, miR-122-containing extracellular vesicles from liver cells are unable to enter infected macrophages, leading to a suppression of the inflammatory response. Furthermore, miR-122 exhibits promise as a potential biomarker for various infectious diseases. Its expression level in body fluids, particularly in serum and plasma, correlates with disease severity and treatment response in patients affected by HCV, HBV, and tuberculosis. This paper also discusses the potential of miR-122 as a biomarker in infectious diseases. In summary, this review provides a comprehensive and insightful overview of the emerging role of miR-122 in infectious diseases, detailing its mechanism of action and potential implications for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Nadezhda Lenoktovna Korotkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation (FSBEI HE PRMU MOH Russia), Russia
| |
Collapse
|
8
|
Kiełbowski K, Ptaszyński K, Wójcik J, Wojtyś ME. The role of selected non-coding RNAs in the biology of non-small cell lung cancer. Adv Med Sci 2023; 68:121-137. [PMID: 36933328 DOI: 10.1016/j.advms.2023.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/26/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Lung cancer is the second most frequently diagnosed cancer worldwide and a leading cause of cancer-related deaths. Non-small cell lung carcinoma (NSCLC) represents 85% of all cases. Accumulating evidence highlights the outstanding role of non-coding RNA (ncRNA) in regulating the tumorigenesis process by modulating crucial signaling pathways. Micro RNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are either up- or downregulated in lung cancer patients and can promote or suppress the progression of the disease. These molecules interact with messenger RNA (mRNA) and with each other to regulate gene expression and stimulate proto-oncogenes or silence tumor suppressors. NcRNAs provide a new strategy to diagnose or treat lung cancer patients and multiple molecules have already been identified as potential biomarkers or therapeutic targets. The aim of this review is to summarize the current evidence on the roles of miRNA, lncRNA and circRNA in NSCLC biology and present their clinical potential.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland.
| |
Collapse
|
9
|
Cai X, Gao C, Lymbery AJ, Armstrong NJ, Ma L, Li C. The immune-related circRNA-miRNA-mRNA ceRNA regulatory network in the liver of turbot (Scophthalmus maximus L.) induced by Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108506. [PMID: 36574792 DOI: 10.1016/j.fsi.2022.108506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Recently, Vibrio anguillarum, a Gram-negative pathogenic bacterium, has been becoming a major constraint on the development of the turbot aquaculture industry because of its characteristics of worldwide distribution, broad host range and potentially devastating impacts. Although the functions of protein-coding mRNAs in the immune response against bacterial infection have been reported, as well as several non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs) and microRNAs (miRNAs), the relationships between mRNAs and ncRNAs in the immune system of turbot liver are still limited during bacterial infection. In present study, the comprehensive analyses of whole-transcriptome sequencing were conducted in turbot liver infected by V. anguillarum. The differential expression was analyzed in the data of circRNAs, miRNAs, and mRNAs. The interactions of miRNA-circRNA pairs and miRNA-mRNA pairs were predicted basing on the negative regulatory relationships between miRNAs and their target circRNAs\mRNAs. The circRNA-related ceRNA regulatory networks were constructed for the analyses of regulated mechanism in turbot immune system. Subsequently, the RT-qPCR was carried out to verify the results of sequencing. Finally, we identified 31 circRNAs, 53 miRNAs and 948 mRNAs with differential expression. Gene set enrichment analyses using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that innate immunity was principally activated at the early stages of infection, while adaptive immunity was activated after 24 h. Finally, 65 circRNA-miRNA-mRNA pathways were constructed, based on the hypothesis of ceRNA regulatory networks. In conclusion, our findings provide new insights on the underlying immune response to bacterial infection and identify novel target genes for the prevention and control of disease in turbot.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Alan J Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Kent Street, Bentley, Perth, WA, 6102, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary & Life Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Haridevamuthu B, Guru A, Velayutham M, Snega Priya P, Arshad A, Arockiaraj J. Long non‐coding RNA, a supreme post‐transcriptional immune regulator of bacterial or virus‐driven immune evolution in teleost. REVIEWS IN AQUACULTURE 2023; 15:163-178. [DOI: 10.1111/raq.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2023]
Abstract
AbstractThe global aquaculture boom, fuelled by a reduction in wild population and detection of novel viruses, has created a demanding market, hence, there is a pressing need to investigate the immune system of fish, further. As the most diverse community of vertebrates and a central contributor to the progressing global aquaculture market, teleost continues to draw vast scientific interest. Recent breakthroughs in multi‐omics technologies have provided a platform to understand the role of long non‐coding RNA (lncRNA) in the host immune system during infection. Emerging evidence shows that teleost lncRNA might have a regulatory role in immune responses, mostly through lncRNA–microRNA (miRNA) sponging. Teleost lncRNA shares a functionally active short sequence complement to target the miRNA which is conserved among the several fish species. Recent report suggests that rhabdovirus exploits a lncRNA in teleost and, to dodge the host immune mechanism and negatively regulate the immune system. This observation reveals the essentiality of lncRNA in pathogen‐driven immunity in teleost. Reports available on the function of teleost lncRNA are still in early stages and experimental verifications are a limiting factor. Unravelling the lncRNA‐mediated immune regulation in fishes could be used against the invading pathogens to strengthen the aquaculture production. This review elaborates on the experimentally identified and functionally characterized lncRNA and its regulatory role in the teleost immune response during infection and pathogen‐driven host immune evolution, which could eventually lead to achieving high standards in aquaculture productivity.
Collapse
Affiliation(s)
- B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Manikandan Velayutham
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - P. Snega Priya
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai Tamil Nadu India
| |
Collapse
|
11
|
Zhou Z, Leng C, Wang Z, Long L, Lv Y, Gao Z, Wang Y, Wang S, Li P. The potential regulatory role of the lncRNA-miRNA-mRNA axis in teleost fish. Front Immunol 2023; 14:1065357. [PMID: 36895573 PMCID: PMC9988957 DOI: 10.3389/fimmu.2023.1065357] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Research over the past two decades has confirmed that noncoding RNAs (ncRNAs), which are abundant in cells from yeast to vertebrates, are no longer "junk" transcripts but functional regulators that can mediate various cellular and physiological processes. The dysregulation of ncRNAs is closely related to the imbalance of cellular homeostasis and the occurrence and development of various diseases. In mammals, ncRNAs, such as long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to serve as biomarkers and intervention targets in growth, development, immunity, and disease progression. The regulatory functions of lncRNAs on gene expression are usually mediated by crosstalk with miRNAs. The most predominant mode of lncRNA-miRNA crosstalk is the lncRNA-miRNA-mRNA axis, in which lncRNAs act as competing endogenous RNAs (ceRNAs). Compared to mammals, little attention has been given to the role and mechanism of the lncRNA-miRNA-mRNA axis in teleost species. In this review, we provide current knowledge about the teleost lncRNA-miRNA-mRNA axis, focusing on its physiological and pathological regulation in growth and development, reproduction, skeletal muscle, immunity to bacterial and viral infections, and other stress-related immune responses. Herein, we also explored the potential application of the lncRNA-miRNA-mRNA axis in the aquaculture industry. These findings contribute to an enhanced understanding of ncRNA and ncRNA-ncRNA crosstalk in fish biology to improve aquaculture productivity, fish health and quality.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Cuibo Leng
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zhan Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yiju Lv
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ziru Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Tian Y, Liu Y, Wang Q, Wen J, Wu Y, Han J, Man C. Stress-Induced Immunosuppression Affects Immune Response to Newcastle Disease Virus Vaccine via Circulating miRNAs. Animals (Basel) 2022; 12:ani12182376. [PMID: 36139236 PMCID: PMC9495071 DOI: 10.3390/ani12182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating miRNAs play important roles in immune response and stress-induced immunosuppression, but the function and mechanism of stress-induced immunosuppression affecting the NDV vaccine immune response remain unknown. In our study, key timepoints, functions, mechanisms, and potential biomarkers of circulating miRNAs involved in immune response and immunosuppression were discovered, providing a theoretical basis for studying the roles of circulating miRNAs in immune regulation. Abstract Studies have shown that circulating microRNAs (miRNAs) are important players in the immune response and stress-induced immunosuppression. However, the function and mechanism of stress-induced immunosuppression affecting the immune response to the Newcastle disease virus (NDV) vaccine remain largely unknown. This study analyzed the changes of 15 NDV-related circulating miRNAs at different immune stages by qRT-PCR, aiming to explore the key timepoints, potential biomarkers, and mechanisms for the functional regulation of candidate circulating miRNAs under immunosuppressed conditions. The results showed that stress-induced immunosuppression induced differential expressions of the candidate circulating miRNAs, especially at 2 days post immunization (dpi), 14 dpi, and 28 dpi. In addition, stress-induced immunosuppression significantly affected the immune response to NDV vaccine, which was manifested by significant changes in candidate circulating miRNAs at 2 dpi, 5 dpi, and 21 dpi. The featured expressions of candidate circulating miRNAs indicated their potential application as biomarkers in immunity and immunosuppression. Bioinformatics analysis revealed that the candidate circulating miRNAs possibly regulated immune function through key targeted genes, such as Mg2+/Mn2+-dependent 1A (PPM1A) and Nemo-like kinase (NLK), in the MAPK signaling pathway. This study provides a theoretical reference for studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
|
13
|
Sun L, Zheng W, Sun Y, Xu T. Long non-coding RNA LTCONS7822 positively regulates innate immunity by targeting MITA in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 125:285-291. [PMID: 35595061 DOI: 10.1016/j.fsi.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulated studies have shown that long non-coding RNA (lncRNA) is considered a critical regulatory factor in mammals, with a length greater than 200 nucleotides, and it can participate in gene imprinting, dose compensation, transcription enhancement, and antisense regulation. Most of the above studies are carried out in mammals, and there are very few studies on lncRNA of lower vertebrates. Here, we report a novel lncRNA, LTCONS7822, which can play a positive regulatory effect on antiviral immunity in miiuy croaker, Miichthys miiuy. Our results show that the levels of lncRNA LTCONS7822 were significantly increased after poly (I:C) stimulation. Further study, we found that lncRNA LTCONS7822 could positively regulate MITA at the post-transcriptional level. In addition, the dual-luciferase reporter assay analysis showed that the positive regulatory effect of lncRNA LTCONS7822 on NF-κB and IRF3 signaling pathways presented the dose and time-dependent manner. Western blotting experiments proved that lncRNA LTCONS7822 has a positive regulatory effect on MITA. Collectively, our study provided new information to enrich the immune regulation network of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
14
|
Cui J, Zheng W, Xu T, Sun Y. Long Noncoding RNA MIR122HG Inhibits MAVS-Mediated Antiviral Immune Response by Deriving miR-122 in Miiuy Croaker ( Miichthys miiuy). Viruses 2022; 14:930. [PMID: 35632672 PMCID: PMC9143459 DOI: 10.3390/v14050930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) function as micro regulators to impact gene expression after multiple pathogen infections, which have been largely studied in the last few years. Although lncRNA studies on lower vertebrates have received less attention than those on mammals, current studies suggest that lncRNA plays an important role in the immune response of fish to pathogen infections. Here, we studied the effect of MIR122HG as the host gene of miR-122 and indirectly negatively regulate MAVS-mediated antiviral immune responses in miiuy croaker (Miichthysmiiuy). We found that poly(I:C) significantly increases the host MIR122HG expression. The increased MIR122HG expression inhibited the production of the antiviral immune-related genes IFN-1, ISG15 and Viperin upon SCRV treatment. In addition, MIR122HG can act as a pivotally negative regulator involved in the MAVS-mediated NF-κB and IRF3 signaling pathways, which can effectively avoid an excessive immune response. Additionally, we found that MIR122HG can promote the replication of SCRV. Our study provides evidence about the involvement of lncRNAs in the antiviral immune response of fish and broadens the understanding of the function of lncRNAs as a precursor miRNA in teleost fish.
Collapse
Affiliation(s)
- Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (W.Z.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|