1
|
Exconde PM, Bourne CM, Kulkarni M, Discher BM, Taabazuing CY. Inflammatory caspase substrate specificities. mBio 2024; 15:e0297523. [PMID: 38837391 PMCID: PMC11253702 DOI: 10.1128/mbio.02975-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.
Collapse
Affiliation(s)
- Patrick M. Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christopher M. Bourne
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madhura Kulkarni
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bohdana M. Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Dong Y, Bonin JP, Devant P, Liang Z, Sever AIM, Mintseris J, Aramini JM, Du G, Gygi SP, Kagan JC, Kay LE, Wu H. Structural transitions enable interleukin-18 maturation and signaling. Immunity 2024; 57:1533-1548.e10. [PMID: 38733997 PMCID: PMC11236505 DOI: 10.1016/j.immuni.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Several interleukin-1 (IL-1) family members, including IL-1β and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jeffrey P Bonin
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoyi Liang
- Bioscience and Biomedical Engineering Thrust, Brain and Intelligence Research Institute, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Alexander I M Sever
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - James M Aramini
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Stephen P Gygi
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lewis E Kay
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
4
|
Bibo-Verdugo B, Salvesen G. Evolution of Caspases and the Invention of Pyroptosis. Int J Mol Sci 2024; 25:5270. [PMID: 38791309 PMCID: PMC11121540 DOI: 10.3390/ijms25105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The protein scaffold that includes the caspases is ancient and found in all domains of life. However, the stringent specificity that defines the caspase biologic function is relatively recent and found only in multicellular animals. During the radiation of the Chordata, members of the caspase family adopted roles in immunity, events coinciding with the development of substrates that define the modern innate immune response. This review focuses on the switch from the non-inflammatory cellular demise of apoptosis to the highly inflammatory innate response driven by distinct members of the caspase family, and the interplay between these two regulated cell death pathways.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur 4720, La Paz 23080, Mexico;
| | - Guy Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Exconde PM, Hernandez-Chavez C, Bourne CM, Richards RM, Bray MB, Lopez JL, Srivastava T, Egan MS, Zhang J, Yoo W, Shin S, Discher BM, Taabazuing CY. The tetrapeptide sequence of IL-18 and IL-1β regulates their recruitment and activation by inflammatory caspases. Cell Rep 2023; 42:113581. [PMID: 38103201 PMCID: PMC11158830 DOI: 10.1016/j.celrep.2023.113581] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1β and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1β to generate a 27-kDa fragment that deactivates IL-1β signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1β recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.
Collapse
Affiliation(s)
- Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia Hernandez-Chavez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M Bourne
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel M Richards
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark B Bray
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jan L Lopez
- Department of Biology, Boston University, Boston, MA, USA
| | - Tamanna Srivastava
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marisa S Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William Yoo
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cornelius Y Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Exconde PM, Hernandez-Chavez C, Bray MB, Lopez JL, Srivastava T, Egan MS, Zhang J, Shin S, Discher BM, Taabazuing CY. The tetrapeptide sequence of IL-1β regulates its recruitment and activation by inflammatory caspases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528859. [PMID: 36824844 PMCID: PMC9949112 DOI: 10.1101/2023.02.16.528859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The mammalian innate immune system uses germline-encoded cytosolic pattern-recognition receptors (PRRs) to detect intracellular danger signals. At least six of these PRRs are known to form multiprotein complexes called inflammasomes which activate cysteine proteases known as caspases. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines such as IL-1β and IL-18, as well as the pore forming protein, gasdermin D (GSDMD), to induce pyroptotic cell death. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are activated by intracellular LPS to cleave GSDMD, but their role in direct processing of inflammatory cytokines has not been established. Here we show that active CASP4/5 directly cleave IL-18 to generate the active species. Surprisingly, we also discovered that CASP4/5/11 cleave IL-1β at D27 to generate a 27 kDa fragment that is predicted to be inactive and cannot signal to the IL-1 receptor. Mechanistically, we discovered that the sequence identity of the P4-P1 tetrapeptide sequence adjacent to the caspase cleavage site (D116) regulates the recruitment and processing of IL-1β by inflammatory caspases to generate the bioactive species. Thus, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation.
Collapse
Affiliation(s)
- Patrick M. Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Claudia Hernandez-Chavez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark B. Bray
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jan L. Lopez
- Present address: Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Tamanna Srivastava
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bohdana M. Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|