1
|
Karatayeva N, Hegedus L, Bhattacharjee A, Nemeth E, Poti A, Pongor L, Juhasz G, Szuts D, Burkovics P. The effect of prolonged G-quadruplex stabilization on the functions of human cells. Sci Rep 2025; 15:19699. [PMID: 40467867 PMCID: PMC12137815 DOI: 10.1038/s41598-025-04791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025] Open
Abstract
Guanine-rich DNA sequences have a propensity to form G-quadruplex structures. These structures play several important biological roles and are potential targets for anticancer drugs. However, no G-quadruplex-stabilizing agent has yet been approved for clinical use. Given that G-quadruplex stabilization is quite promising as a mechanism for novel anticancer therapies, it is crucial to elucidate its effects on healthy human cells. In our study, we modeled a potential human treatment using G4 -stabilizing agents and analyzed their effects on genome integrity, transcriptomic changes, and mitochondrial function focusing on non-cancerous cells to predict potential side effects of such treatments. We found that G-quadruplex stabilization does not compromise genome integrity. However, it can induce persistent alterations in the transcriptomic profile of human cells, including genes encoded on the mitochondrial genome. Notably, certain G-quadruplex-stabilizing agents triggered mitophagy in both human cells and Drosophila melanogaster. In summary, our findings indicate that while G-quadruplex stabilization does not cause genome instability, it may pose potential risks due to its long-term effects on transcription and its ability to induce mitophagy. Therefore, we recommend that all potential drug candidates be thoroughly evaluated for their ability to induce mitophagy and to promote cancer formation in animal models prior to clinical trials.
Collapse
Affiliation(s)
- Nargis Karatayeva
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Lili Hegedus
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
| | - Arindam Bhattacharjee
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
- Developmental Biology Group, Agharkar Research Institute, Pune, India
| | - Eszter Nemeth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Adam Poti
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lorinc Pongor
- Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Gabor Juhasz
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary
| | - David Szuts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Peter Burkovics
- Institute of Genetics, HUN-REN, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
2
|
Batra S, Allwein B, Kumar C, Devbhandari S, Brüning JG, Bahng S, Lee CM, Marians KJ, Hite RK, Remus D. G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation. Science 2025; 387:eadt1978. [PMID: 40048517 DOI: 10.1126/science.adt1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/15/2024] [Indexed: 03/15/2025]
Abstract
DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions.
Collapse
Affiliation(s)
- Sahil Batra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- BCMB Allied PhD Program, Weill Cornell Medical Graduate School, Weill Cornell Medicine, New York, NY, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan-Gert Brüning
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soon Bahng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chong M Lee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth J Marians
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Fazelifar P, Cucchiarini A, Khoshbin Z, Mergny JL, Kazemi Noureini S. Strong and selective interactions of palmatine with G-rich sequences in TRF2 promoter; experimental and computational studies. J Biomol Struct Dyn 2025; 43:1674-1688. [PMID: 38100552 DOI: 10.1080/07391102.2023.2292793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
G-rich sequences have the potential to fold into G-quadruplexes (GQs). G-quadruplexes, particularly those positioned in the regulatory regions of proto-oncogenes, have recently garnered attention in anti-cancer drug design. A thermal FRET assay was employed to conduct preliminary screening of various alkaloids, aiming to identify stronger interactions with a specific set of G-rich double-labeled oligonucleotides in both K + and Na + buffers. These oligonucleotides were derived from regions associated with Kit, Myc, Ceb, Bcl2, human telomeres, and potential G-quadruplex forming sequences found in the Nrf2 and Trf2 promoters. Palmatine generally increased the stability of different G-rich sequences into their folded GQ structures, more or less in a concentration dependent manner. The thermal stability and interaction of palmatine was further studied using transition FRET (t-FRET), CD and UV-visible spectroscopy and molecular dynamics simulation methods. Palmatine showed the strongest interaction with T RF2 in both K+ and Na+ buffers even at equimolar concentration ratio. T-FRET studies revealed that palmatine has the potential to disrupt double-strand formation by the T RF2 sequence in the presence of its complementary strand. Palmatine exhibits a stronger interaction with G-rich strand DNA, promoting its folding into G-quadruplex structures. It is noteworthy that palmatine exhibits the strongest interaction with T RF2, which is the shortest sequence among the G-rich oligonucleotides studied, featuring only one nucleotide for two of its loops. Palmatine represents a suitable structure for drug design to develop more specific ligands targeting G-quadruplexes. Whether palmatine can also affect the expression of the T RF2 gene requires further studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pegah Fazelifar
- Department of Biology, Faculty of Basic Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | - Zahra Khoshbin
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
4
|
Goncalves T, Cunniffe S, Ma T, Mattis N, Rose A, Kent T, Mole D, Geiller HB, van Bijsterveldt L, Humphrey T, Hammond E, Gibbons R, Clynes D, Rose A. Elevated reactive oxygen species can drive the alternative lengthening of telomeres pathway in ATRX-null cancers. Nucleic Acids Res 2025; 53:gkaf061. [PMID: 39921567 PMCID: PMC11806356 DOI: 10.1093/nar/gkaf061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/18/2024] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
The alternative lengthening of telomeres (ALT) pathway is a telomerase-independent mechanism for immortalization in cancer cells and is commonly activated in low-grade and high-grade glioma, as well as osteosarcoma. The ALT pathway can be activated under various conditions and has often been shown to include mutational loss of ATRX. However, this is insufficient in isolation and so other cellular event must also be implicated. It has been shown that excessive accumulation of DNA:RNA hybrid structures (R-loops) and/or formation of DNA-protein crosslinks (DPCs) can be other important driving factors. The underlying cellular events leading to R-loop and DPC formation in ALT cancer cells to date remain unclear. Here, we demonstrate that excessive cellular reactive oxygen species (ROS) is an important causative factor in the evolution of ALT-telomere maintenance in ATRX-deficient glioma. We identified three sources of elevated ROS in ALT-positive gliomas: co-mutation of SETD2, downregulation of DRG2, and hypoxic tumour microenvironment. We demonstrate that elevated ROS leads to accumulation of R-loops and, crucially, resolution of R-loops by the enzyme RNase H1 prevents ALT pathway activity in cells exposed to elevated ROS. Further, we found a possible causal link between the formation of R-loops and the accumulation of DPCs, in particular, formation of TOP1 complexes covalently linked to DNA (Top1cc). We also demonstrate that elevation of ROS can trigger over-activity of the ALT pathway in osteosarcoma and glioma cell lines, resulting in excessive DNA damage and cell death. This work presents important mechanistic insights into the endogenous origin of excessive R-loops and DPCs in ALT-positive cancers, as well as highlighting potential novel therapeutic approaches in these difficult-to-treat cancer types.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Cunniffe
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Tiffany S Ma
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Natalie Mattis
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Andrew W Rose
- Department of Physics, Faculty of Natural Sciences, Imperial College, London, SW7 2BW, UK
| | - Thomas Kent
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David R Mole
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | | | | | | | - Ester M Hammond
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Richard J Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - David Clynes
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna M Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Parsons AM, Byrne S, Kooistra J, Dewey J, Zebolsky AL, Alvarado G, Bouma GJ, Vanden Heuvel GB, Larson ED. G-quadruplex stabilization provokes DNA breaks in human PKD1, revealing a second hit mechanism for ADPKD. Nat Commun 2025; 16:121. [PMID: 39747084 PMCID: PMC11696556 DOI: 10.1038/s41467-024-55684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease. Since human PKD1 follows second hit and mouse Pkd1 heterozygotes do not, we reasoned that there is likely a molecular difference that explains the elevated mutagenesis of the human gene. Here we demonstrate that guanine quadruplex DNA structures are abundant throughout human, but not mouse, PKD1 where they activate the DNA damage response. Our results suggest that guanine quadruplex DNAs provoke DNA breaks in PKD1, providing a potential mechanism for cystogenesis in autosomal dominant polycystic kidney disease specifically and for the inactivation of guanine quadruplex-rich tumor suppressors generally.
Collapse
Affiliation(s)
- Agata M Parsons
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Seth Byrne
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Jesse Kooistra
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - John Dewey
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Aaron L Zebolsky
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gloria Alvarado
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Erik D Larson
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
6
|
Phogat P, Bansal A, Nain N, Khan S, Saso L, Kukreti S. Quest for space: Tenacity of DNA, Protein, and Lipid macromolecules in intracellular crowded environment. Biomol Concepts 2025; 16:bmc-2025-0053. [PMID: 40022308 DOI: 10.1515/bmc-2025-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025] Open
Abstract
The biochemical processes in the cellular milieu involving biomacromolecular interaction usually occur in crowded and heterogeneous environments, impacting their structure, stability, and reactivity. The crowded environment in vivo is typically ignored for experimental investigations since the studies get complex due to intracellular biophysical interactions between nucleic acids, proteins, cellular membranes, and various cations/anions present in the cell. Thus, being a ubiquitous property of all cells, studying those biophysical aspects affecting biochemical processes under realistically crowded conditions is of prime importance. Crowders or crowding agents are usually exploited to mimic the in vivo conditions on interacting with such genomic species, revealing structural and functional changes resulting from excluded volume and soft interactions. In the last few years, studies including crowders of varied sizes have gained attention concerning the consequences of crowding agents on biomolecular structural transitions and stability. This review comprehensively summarizes macromolecular crowding, emphasizing the biophysical effects and contribution of soft interactions in the heterogeneous cellular environment.
Collapse
Affiliation(s)
- Priyanka Phogat
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Aparna Bansal
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Nishu Nain
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi 110021, India
| | - Shoaib Khan
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
7
|
Lee RS, Twarowski JM, Malkova A. Stressed? Break-induced replication comes to the rescue! DNA Repair (Amst) 2024; 142:103759. [PMID: 39241677 DOI: 10.1016/j.dnarep.2024.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.
Collapse
Affiliation(s)
- Rosemary S Lee
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Anna Malkova
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Fracchioni G, Vailati S, Grazioli M, Pirota V. Structural Unfolding of G-Quadruplexes: From Small Molecules to Antisense Strategies. Molecules 2024; 29:3488. [PMID: 39124893 PMCID: PMC11314335 DOI: 10.3390/molecules29153488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that have gathered significant interest in medicinal chemistry over the past two decades due to their unique structural features and potential roles in a variety of biological processes and disorders. Traditionally, research efforts have focused on stabilizing G4s, while in recent years, the attention has progressively shifted to G4 destabilization, unveiling new therapeutic perspectives. This review provides an in-depth overview of recent advances in the development of small molecules, starting with the controversial role of TMPyP4. Moreover, we described effective metal complexes in addition to G4-disrupting small molecules as well as good G4 stabilizing ligands that can destabilize G4s in response to external stimuli. Finally, we presented antisense strategies as a promising approach for destabilizing G4s, with a particular focus on 2'-OMe antisense oligonucleotide, peptide nucleic acid, and locked nucleic acid. Overall, this review emphasizes the importance of understanding G4 dynamics as well as ongoing efforts to develop selective G4-unfolding strategies that can modulate their biological function and therapeutic potential.
Collapse
Affiliation(s)
- Giorgia Fracchioni
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| | - Sabrina Vailati
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Marta Grazioli
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, 27100 Pavia, Italy; (G.F.); (S.V.); (M.G.)
- G4-INTERACT Group, Universal Scientific Education and Research Network (USERN), 27100 Pavia, Italy
| |
Collapse
|
9
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
10
|
Parsons AM, Su K, Daniels M, Bouma GJ, Vanden Heuvel GB, Larson ED. Human PKD1 sequences form R-loop structures in vitro. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001058. [PMID: 38371318 PMCID: PMC10873753 DOI: 10.17912/micropub.biology.001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Autosomal dominant polycystic kidney disease results from the loss of the PKD1 gene product, polycystin 1. Regulatory mechanisms are unresolved, but an apparent G/C sequence bias in the gene is consistent with co-transcriptional R-loop formation. R-loops regulate gene expression and stability, and they form when newly synthesized RNA extensively pairs with the template DNA to displace the non-template strand. In this study, we tested two human PKD1 sequences for co-transcriptional R-loop formation in vitro. We observed RNase H-sensitive R-loop formation in intron 1 and 22 sequences, but only in one transcriptional orientation. Therefore, R-loops may participate in PKD1 expression or stability.
Collapse
Affiliation(s)
- Agata M Parsons
- Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| | - Kemin Su
- Investigative Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| | - Maya Daniels
- Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| | - Gerrit J Bouma
- Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| | - Gregory B Vanden Heuvel
- Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| | - Erik D Larson
- Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, United States
| |
Collapse
|
11
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
12
|
Vannutelli A, Ouangraoua A, Perreault JP. Toward a Better Understanding of G4 Evolution in the 3 Living Kingdoms. Evol Bioinform Online 2023; 19:11769343231212075. [PMID: 38046653 PMCID: PMC10693206 DOI: 10.1177/11769343231212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Background G-quadruplexes (G4s) are secondary structures in DNA and RNA that impact various cellular processes, such as transcription, splicing, and translation. Due to their numerous functions, G4s are involved in many diseases, making their study important. Yet, G4s evolution remains largely unknown, due to their low sequence similarity and the poor quality of their sequence alignments across several species. To address this, we designed a strategy that avoids direct G4s alignment to study G4s evolution in the 3 species kingdoms. We also explored the coevolution between RBPs and G4s. Methods We retrieved one-to-one orthologous genes from the Ensembl Compara database and computed groups of one-to-one orthologous genes. For each group, we aligned gene sequences and identified G4 families as groups of overlapping G4s in the alignment. We analyzed these G4 families using Count, a tool to infer feature evolution into a gene or a species tree. Additionally, we utilized these G4 families to predict G4s by homology. To establish a control dataset, we performed mono-, di- and tri-nucleotide shuffling. Results Only a few conserved G4s occur among all living kingdoms. In eukaryotes, G4s exhibit slight conservation among vertebrates, and few are conserved between plants. In archaea and bacteria, at most, only 2 G4s are common. The G4 homology-based prediction increases the number of conserved G4s in common ancestors. The coevolution between RNA-binding proteins and G4s was investigated and revealed a modest impact of RNA-binding proteins evolution on G4 evolution. However, the details of this relationship remain unclear. Conclusion Even if G4 evolution still eludes us, the present study provides key information to compute groups of homologous G4 and to reveal the evolution history of G4 families.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aïda Ouangraoua
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Abdi MH, Zamiri B, Pazuki G, Sardari S, Pearson CE. Pathogenic CANVAS-causing but not nonpathogenic RFC1 DNA/RNA repeat motifs form quadruplex or triplex structures. J Biol Chem 2023; 299:105202. [PMID: 37660923 PMCID: PMC10563062 DOI: 10.1016/j.jbc.2023.105202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023] Open
Abstract
Biallelic expansions of various tandem repeat sequence motifs are possible in RFC1 (replication factor C subunit 1), encoding the DNA replication/repair protein RFC1, yet only certain repeat motifs cause cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). CANVAS presents enigmatic puzzles: The pathogenic path for CANVAS neither is known nor is it understood why some, but not all expanded, motifs are pathogenic. The most common pathogenic repeat is (AAGGG)n•(CCCTT)n, whereas (AAAAG)n•(CTTTT)n is the most common nonpathogenic motif. While both intronic motifs can be expanded and transcribed, only r(AAGGG)n is retained in the mutant RFC1 transcript. We show that only the pathogenic forms unusual nucleic acid structures. Specifically, DNA and RNA of the pathogenic d(AAGGG)4 and r(AAGGG)4 form G-quadruplexes in potassium solution. Nonpathogenic repeats did not form G-quadruplexes. Triple-stranded structures are formed by the pathogenic motifs but not by the nonpathogenic motifs. G- and C-richness of the pathogenic strands favor formation of G•G•G•G-tetrads and protonated C+-G Hoogsteen base pairings, involved in quadruplex and triplex structures, respectively, stabilized by increased hydrogen bonds and pi-stacking interactions relative to A-T Hoogsteen pairs that could form by the nonpathogenic motif. The ligand, TMPyP4, binds the pathogenic quadruplexes. Formation of quadruplexes and triplexes by pathogenic repeats supports toxic-DNA and toxic-RNA modes of pathogenesis at the RFC1 gene and the RFC1 transcript. Our findings with short repeats provide insights into the disease specificity of pathogenic repeat motif sequences and reveal nucleic acid structural features that may be pathogenically involved and targeted therapeutically.
Collapse
Affiliation(s)
- Mohammad Hossein Abdi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Bita Zamiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Christopher E Pearson
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Panova VV, Dolinnaya NG, Novoselov KA, Savitskaya VY, Chernykh IS, Kubareva EA, Alexeevski AV, Zvereva MI. Conserved G-Quadruplex-Forming Sequences in Mammalian TERT Promoters and Their Effect on Mutation Frequency. Life (Basel) 2023; 13:1478. [PMID: 37511853 PMCID: PMC10381784 DOI: 10.3390/life13071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Somatic mutations in the promoter region of the human telomerase reverse transcriptase (hTERT) gene have been identified in many types of cancer. The hTERT promoter is known to be enriched with sequences that enable the formation of G-quadruplex (G4) structures, whose presence is associated with elevated mutagenicity and genome instability. Here, we used a bioinformatics tool (QGRS mapper) to search for G4-forming sequences (G4 motifs) in the 1000 bp TERT promoter regions of 141 mammalian species belonging to 20 orders, 5 of which, including primates and predators, contain more than 10 species. Groups of conserved G4 motifs and single-nucleotide variants within these groups were discovered using a block alignment approach (based on the Nucleotide PanGenome explorer). It has been shown that: (i) G4 motifs are predominantly located in the region proximal to the transcription start site (up to 400 bp) and are over-represented on the non-coding strand of the TERT promoters, (ii) 11 to 22% of the G4 motifs found are evolutionarily conserved across the related organisms, and (iii) a statistically significant higher frequency of nucleotide substitutions in the conserved G4 motifs compared to the surrounding regions was confirmed only for the order Primates. These data support the assumption that G4s can interfere with the DNA repair process and affect the evolutionary adaptation of organisms and species.
Collapse
Affiliation(s)
- Vera V Panova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119234, Russia
| | - Nina G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Kirill A Novoselov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Viktoriia Yu Savitskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| | - Ivan S Chernykh
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119234, Russia
| | - Elena A Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
| | - Andrei V Alexeevski
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119992, Russia
- Department of Mathematics, Scientific Research Institute for System Studies, Russian Academy of Sciences, Nakhimovskii Prospekt 36-1, Moscow 117218, Russia
| | - Maria I Zvereva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia
| |
Collapse
|
16
|
Abstract
Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
17
|
The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands. Eur J Med Chem 2023; 248:115103. [PMID: 36645982 DOI: 10.1016/j.ejmech.2023.115103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.
Collapse
|
18
|
Rider SD, Damewood FJ, Gadgil RY, Hitch DC, Alhawach V, Shrestha R, Shanahan M, Zavada N, Leffak M. Suppressors of Break-Induced Replication in Human Cells. Genes (Basel) 2023; 14:genes14020398. [PMID: 36833325 PMCID: PMC9956954 DOI: 10.3390/genes14020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Short tandem DNA repeats are drivers of genome instability. To identify suppressors of break-induced mutagenesis human cells, unbiased genetic screens were conducted using a lentiviral shRNA library. The recipient cells possessed fragile non-B DNA that could induce DNA double-strand breaks (DSBs), integrated at an ectopic chromosomal site adjacent to a thymidine kinase marker gene. Mutagenesis of the thymidine kinase gene rendered cells resistant to the nucleoside analog ganciclovir (GCV). The screen identified genes that have established roles in DNA replication and repair, chromatin modification, responses to ionizing radiation, and genes encoding proteins enriched at replication forks. Novel loci implicated in BIR included olfactory receptors, the G0S2 oncogene/tumor suppressor axis, the EIF3H-METTL3 translational regulator, and the SUDS3 subunit of the Sin3A corepressor. Consistent with a role in suppressing BIR, siRNA knockdown of selected candidates increased the frequency of the GCVr phenotype and increased DNA rearrangements near the ectopic non-B DNA. Inverse PCR and DNA sequence analyses showed that hits identified in the screen increased genome instability. Further analysis quantitated repeat-induced hypermutagenesis at the ectopic site and showed that knockdown of a primary hit, COPS2, induced mutagenic hotspots, remodeled the replication fork, and increased nonallelic chromosome template switches.
Collapse
|