1
|
Gammons MV, Franco-Echevarría E, Li TM, Rutherford TJ, Renko M, Batters C, Bienz M. Wnt signalosome assembly is governed by conformational flexibility of Axin and by the AP2 clathrin adaptor. Nat Commun 2025; 16:4718. [PMID: 40399324 DOI: 10.1038/s41467-025-59984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 05/08/2025] [Indexed: 05/23/2025] Open
Abstract
Wnt signal transduction relies on the direct inhibition of GSK3 by phosphorylated PPPSPxS motifs within the cytoplasmic tail of the LRP6 co-receptor. How GSK3 is recruited to LRP6 remains unclear. Here, we use nuclear magnetic resonance spectroscopy to identify the membrane-proximal PPPSPxS motif and its flanking sequences as the primary binding site for both Axin and GSK3, and an intrinsically disordered segment of Axin as its LRP6-interacting region (LIR). Co-immunoprecipitation and CRISPR-engineered mutations in endogenous Axin indicate that its docking at LRP6 is antagonized by a phospho-dependent foldback within LIR and by a PRTxR motif that allows Axin and GSK3 to form a multi-pronged interaction which favors their detachment from LRP6. Crucially, signaling by LRP6 also depends on its binding to the AP2 clathrin adaptor. We propose that the Wnt-driven clustering of LRP6 within clathrin-coated locales allows the Axin-GSK complex to dock at adjacent LRP6 molecules, while also exposing it to co-targeted kinases that change its activity in Wnt signal transduction.
Collapse
Affiliation(s)
- Melissa V Gammons
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK.
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | | - Tie-Mei Li
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK
| | - Trevor J Rutherford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK
| | - Miha Renko
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Christopher Batters
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Radaszkiewicz KA, Sulcova M, Kohoutkova E, Harnos J. The role of prickle proteins in vertebrate development and pathology. Mol Cell Biochem 2024; 479:1199-1221. [PMID: 37358815 PMCID: PMC11116189 DOI: 10.1007/s11010-023-04787-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Prickle is an evolutionarily conserved family of proteins exclusively associated with planar cell polarity (PCP) signalling. This signalling pathway provides directional and positional cues to eukaryotic cells along the plane of an epithelial sheet, orthogonal to both apicobasal and left-right axes. Through studies in the fruit fly Drosophila, we have learned that PCP signalling is manifested by the spatial segregation of two protein complexes, namely Prickle/Vangl and Frizzled/Dishevelled. While Vangl, Frizzled, and Dishevelled proteins have been extensively studied, Prickle has been largely neglected. This is likely because its role in vertebrate development and pathologies is still being explored and is not yet fully understood. The current review aims to address this gap by summarizing our current knowledge on vertebrate Prickle proteins and to cover their broad versatility. Accumulating evidence suggests that Prickle is involved in many developmental events, contributes to homeostasis, and can cause diseases when its expression and signalling properties are deregulated. This review highlights the importance of Prickle in vertebrate development, discusses the implications of Prickle-dependent signalling in pathology, and points out the blind spots or potential links regarding Prickle, which could be studied further.
Collapse
Affiliation(s)
- K A Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - M Sulcova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - E Kohoutkova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia
| | - J Harnos
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czechia.
| |
Collapse
|
3
|
Gomez SM, Axtman AD, Willson TM, Major MB, Townsend RR, Sorger PK, Johnson GL. Illuminating function of the understudied druggable kinome. Drug Discov Today 2024; 29:103881. [PMID: 38218213 PMCID: PMC11262466 DOI: 10.1016/j.drudis.2024.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture. These resources are available through the Dark Kinase Knowledgebase, supporting further research into these understudied protein kinases.
Collapse
Affiliation(s)
- Shawn M Gomez
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Alison D Axtman
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Timothy M Willson
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michael B Major
- Washington University School of Medicine in St. Louis, MO, USA
| | - Reid R Townsend
- Washington University School of Medicine in St. Louis, MO, USA
| | | | - Gary L Johnson
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Speck SL, Bhatt DP, Zhang Q, Adak S, Yin L, Dong G, Feng C, Zhang W, Ben Major M, Wei X, Semenkovich CF. Hepatic palmitoyl-proteomes and acyl-protein thioesterase protein proximity networks link lipid modification and mitochondria. Cell Rep 2023; 42:113389. [PMID: 37925639 PMCID: PMC10872372 DOI: 10.1016/j.celrep.2023.113389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Acyl-protein thioesterases 1 and 2 (APT1 and APT2) reverse S-acylation, a potential regulator of systemic glucose metabolism in mammals. Palmitoylation proteomics in liver-specific knockout mice shows that APT1 predominates over APT2, primarily depalmitoylating mitochondrial proteins, including proteins linked to glutamine metabolism. miniTurbo-facilitated determination of the protein-protein proximity network of APT1 and APT2 in HepG2 cells reveals APT proximity networks encompassing mitochondrial proteins including the major translocases Tomm20 and Timm44. APT1 also interacts with Slc1a5 (ASCT2), the only glutamine transporter known to localize to mitochondria. High-fat-diet-fed male mice with dual (but not single) hepatic deletion of APT1 and APT2 have insulin resistance, fasting hyperglycemia, increased glutamine-driven gluconeogenesis, and decreased liver mass. These data suggest that APT1 and APT2 regulation of hepatic glucose metabolism and insulin signaling is functionally redundant. Identification of substrates and protein-protein proximity networks for APT1 and APT2 establishes a framework for defining mechanisms underlying metabolic disease.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Dhaval P Bhatt
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Wei Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - M Ben Major
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA; Department of Otolaryngology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Hu Y, Xu Z, Pan Q, Ma L. Casein kinase 1 gamma regulates oxidative stress response via interacting with the NADPH dual oxidase complex. PLoS Genet 2023; 19:e1010740. [PMID: 37099597 PMCID: PMC10166522 DOI: 10.1371/journal.pgen.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/08/2023] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
Oxidative stress response is a fundamental biological process mediated by conserved mechanisms. The identities and functions of some key regulators remain unknown. Here, we report a novel role of C. elegans casein kinase 1 gamma CSNK-1 (also known as CK1γ or CSNK1G) in regulating oxidative stress response and ROS levels. csnk-1 interacted with the bli-3/tsp-15/doxa-1 NADPH dual oxidase genes via genetic nonallelic noncomplementation to affect C. elegans survival in oxidative stress. The genetic interaction was supported by specific biochemical interactions between DOXA-1 and CSNK-1 and potentially between their human orthologs DUOXA2 and CSNK1G2. Consistently, CSNK-1 was required for normal ROS levels in C. elegans. CSNK1G2 and DUOXA2 each can promote ROS levels in human cells, effects that were suppressed by a small molecule casein kinase 1 inhibitor. We also detected genetic interactions between csnk-1 and skn-1 Nrf2 in oxidative stress response. Together, we propose that CSNK-1 CSNK1G defines a novel conserved regulatory mechanism for ROS homeostasis.
Collapse
Affiliation(s)
- Yiman Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhaofa Xu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Pan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Long Ma
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
- The Key Laboratory of Precision Molecular Medicine of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Durán A, Priestman DA, Las Heras M, Rebolledo-Jaramillo B, Olguín V, Calderón JF, Zanlungo S, Gutiérrez J, Platt FM, Klein AD. A Mouse Systems Genetics Approach Reveals Common and Uncommon Genetic Modifiers of Hepatic Lysosomal Enzyme Activities and Glycosphingolipids. Int J Mol Sci 2023; 24:4915. [PMID: 36902345 PMCID: PMC10002577 DOI: 10.3390/ijms24054915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Identification of genetic modulators of lysosomal enzyme activities and glycosphingolipids (GSLs) may facilitate the development of therapeutics for diseases in which they participate, including Lysosomal Storage Disorders (LSDs). To this end, we used a systems genetics approach: we measured 11 hepatic lysosomal enzymes and many of their natural substrates (GSLs), followed by modifier gene mapping by GWAS and transcriptomics associations in a panel of inbred strains. Unexpectedly, most GSLs showed no association between their levels and the enzyme activity that catabolizes them. Genomic mapping identified 30 shared predicted modifier genes between the enzymes and GSLs, which are clustered in three pathways and are associated with other diseases. Surprisingly, they are regulated by ten common transcription factors, and their majority by miRNA-340p. In conclusion, we have identified novel regulators of GSL metabolism, which may serve as therapeutic targets for LSDs and may suggest the involvement of GSL metabolism in other pathologies.
Collapse
Affiliation(s)
- Anyelo Durán
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | | | - Macarena Las Heras
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Valeria Olguín
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan F. Calderón
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330033, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory, School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 7510602, Chile
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Andrés D. Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|