1
|
He Z, Liu Q, Wang Y, Zhao B, Zhang L, Yang X, Wang Z. The role of endoplasmic reticulum stress in type 2 diabetes mellitus mechanisms and impact on islet function. PeerJ 2025; 13:e19192. [PMID: 40166045 PMCID: PMC11956770 DOI: 10.7717/peerj.19192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a globally prevalent metabolic disorder characterized by insulin resistance and dysfunction of islet cells. Endoplasmic reticulum (ER) stress plays a crucial role in the pathogenesis and progression of T2DM, especially in the function and survival of β-cells. β-cells are particularly sensitive to ER stress because they require substantial insulin synthesis and secretion energy. In the early stages of T2DM, the increased demand for insulin exacerbates β-cell ER stress. Although the unfolded protein response (UPR) can temporarily alleviate this stress, prolonged or excessive stress leads to pancreatic cell dysfunction and apoptosis, resulting in insufficient insulin secretion. This review explores the mechanisms of ER stress in T2DM, particularly its impact on islet cells. We discuss how ER stress activates UPR signaling pathways to regulate protein folding and degradation, but when stress becomes excessive, these pathways may contribute to β-cell death. A deeper understanding of how ER stress impacts islet cells could lead to the development of novel T2DM treatment strategies aimed at improving islet function and slowing disease progression.
Collapse
Affiliation(s)
- Zhaxicao He
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Liu
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Wang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Bing Zhao
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lumei Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xia Yang
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| | - Zhigang Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| |
Collapse
|
2
|
Zhang Z, Zhang X, Wei X, Yu C, Xiao L, Liu J, Liu Y, Cao Y, Song K. IRE1α inhibits osteogenic differentiation of mouse embryonic fibroblasts by limiting Shh signaling. Oral Dis 2024; 30:4504-4517. [PMID: 38438324 DOI: 10.1111/odi.14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1α (IRE1α) on the sonic hedgehog N-terminus (N-Shh)-enhanced-osteogenic differentiation process in mouse embryonic fibroblasts (MEFs). MATERIALS AND METHODS Osteogenesis of MEFs was observed by alkaline phosphatase (ALP) staining, alizarin red staining, and Von Kossa staining assays. Activation of unfolded protein response and Shh signaling were examined using real-time quantitative PCR and western blot assays. IRE1α-deficient MEFs were used to explore the effect of IRE1α on N-Shh-driven osteogenesis. RESULTS N-Shh increased ALP activity, matrix mineralization, and the expression of Alp and Col-I in MEFs under osteogenic conditions; notably, this was reversed when combined with the ER stress activator Tm treatment. Interestingly, the administration of N-Shh decreased the expression of IRE1α. Abrogation of IRE1α increased the expression of Shh pathway factors in osteogenesis-induced MEFs, contributing to the osteogenic effect of N-Shh. Moreover, IRE1α-deficient MEFs exhibited elevated levels of osteogenic markers. CONCLUSIONS Our findings suggest that the IRE1α-mediated unfolded protein response may alleviate the ossification of MEFs by attenuating Shh signaling. Our research has identified a strategy to inhibit excessive ossification, which may have clinical significance in preventing temporomandibular joint bony ankylosis.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| | - Xuan Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
| | - Xiangzhen Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
| | - Chengbo Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| | - Li Xiao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sun X, Lin R, Lu X, Wu Z, Qi X, Jiang T, Jiang J, Mu P, Chen Q, Wen J, Deng Y. UPF3B modulates endoplasmic reticulum stress through interaction with inositol-requiring enzyme-1α. Cell Death Dis 2024; 15:587. [PMID: 39138189 PMCID: PMC11322666 DOI: 10.1038/s41419-024-06973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.
Collapse
Affiliation(s)
- XingSheng Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ruqin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinxia Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhikai Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xueying Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tianqing Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong provincial key laboratory for the development biology and environmental adaptation of agricultural organisms, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
4
|
Borisova E, Newman AG, Couce Iglesias M, Dannenberg R, Schaub T, Qin B, Rusanova A, Brockmann M, Koch J, Daniels M, Turko P, Jahn O, Kaplan DR, Rosário M, Iwawaki T, Spahn CMT, Rosenmund C, Meierhofer D, Kraushar ML, Tarabykin V, Ambrozkiewicz MC. Protein translation rate determines neocortical neuron fate. Nat Commun 2024; 15:4879. [PMID: 38849354 PMCID: PMC11161512 DOI: 10.1038/s41467-024-49198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes. In a small molecule screening, we identify Ire1α as a regulator of Satb2 expression and neuronal polarity. In the developing brain, Ire1α regulates global translation rates, coordinates ribosome traffic, and the expression of eIF4A1. Furthermore, we demonstrate that the Satb2 mRNA translation requires eIF4A1 helicase activity towards its 5'-untranslated region. Altogether, we show that cortical neuron diversity is generated by mechanisms operating beyond gene transcription, with Ire1α-safeguarded proteostasis serving as an essential regulator of brain development.
Collapse
Affiliation(s)
- Ekaterina Borisova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrew G Newman
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Couce Iglesias
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Rike Dannenberg
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bo Qin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Alexandra Rusanova
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Research Institute of Medical Genetics, Tomsk, Russia
| | - Marisa Brockmann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Janina Koch
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marieatou Daniels
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Takao Iwawaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Matthew L Kraushar
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
5
|
Liu S, Zhang X, Yao X, Wang G, Huang S, Chen P, Tang M, Cai J, Wu Z, Zhang Y, Xu R, Liu K, He K, Wang Y, Jiang L, Wang QA, Rui L, Liu J, Liu Y. Mammalian IRE1α dynamically and functionally coalesces with stress granules. Nat Cell Biol 2024; 26:917-931. [PMID: 38714852 DOI: 10.1038/s41556-024-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024]
Abstract
Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.
Collapse
Affiliation(s)
- Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xin Yao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Guan Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Rongzhi Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Jiang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Qiong A Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Thibault E, Brandizzi F. Post-translational modifications: emerging directors of cell-fate decisions during endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Soc Trans 2024; 52:831-848. [PMID: 38600022 PMCID: PMC11088923 DOI: 10.1042/bst20231025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Homeostasis of the endoplasmic reticulum (ER) is critical for growth, development, and stress responses. Perturbations causing an imbalance in ER proteostasis lead to a potentially lethal condition known as ER stress. In ER stress situations, cell-fate decisions either activate pro-life pathways that reestablish homeostasis or initiate pro-death pathways to prevent further damage to the organism. Understanding the mechanisms underpinning cell-fate decisions in ER stress is critical for crop development and has the potential to enable translation of conserved components to ER stress-related diseases in metazoans. Post-translational modifications (PTMs) of proteins are emerging as key players in cell-fate decisions in situations of imbalanced ER proteostasis. In this review, we address PTMs orchestrating cell-fate decisions in ER stress in plants and provide evidence-based perspectives for where future studies may focus to identify additional PTMs involved in ER stress management.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
| | - Federica Brandizzi
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Department of Plant Biology, Michigan State University, East Lansing, MI, U.S.A
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
7
|
Mohanan A, Washimkar KR, Mugale MN. Unraveling the interplay between vital organelle stress and oxidative stress in idiopathic pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119676. [PMID: 38242330 DOI: 10.1016/j.bbamcr.2024.119676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-β, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.
Collapse
Affiliation(s)
- Anushree Mohanan
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|