1
|
Yuan L, Mao LH, Huang YY, Outeiro TF, Li W, Vieira TCRG, Li JY. Stress granules: emerging players in neurodegenerative diseases. Transl Neurodegener 2025; 14:22. [PMID: 40355949 PMCID: PMC12067921 DOI: 10.1186/s40035-025-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Stress granules (SGs) are membraneless organelles formed in the cellular cytoplasm under stressful conditions through liquid-liquid phase separation (LLPS). SG assembly can be both dependent and independent of the eIF2α pathway, whereas cellular protein quality control systems mediate SG disassembly. Chaperones and specific domains of RNA-binding proteins strongly contribute to the regulation SG dynamics. Chronic stress, arising in association with aging, may promote persistent SGs that are difficult to disassemble, thereby acting as a potential pathological nidus for protein aggregation in neurodegenerative diseases (NDDs). In this review, we discuss the dynamics of SGs and the factors involved with SG assembly and disassembly. We also highlight the relationship among LLPS, SGs, and the pathogenesis of different NDDs. More importantly, we summarize SG assembly-disassembly, which may be a double-edged sword in the pathophysiology of NDDs. This review aims to provide new insights into the biology and pathology of LLPS, SGs, and NDDs.
Collapse
Affiliation(s)
- Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China.
| | - Li-Hong Mao
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China
| | - Yong-Ye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Wen Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis and National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Jia-Yi Li
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Sciences Institute, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center, BMC, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
2
|
Tomar VR, Sharma S, Siddhanta S, Deep S. Biophysical and spectroscopical insights into structural modulation of species in the aggregation pathway of superoxide dismutase 1. Commun Chem 2025; 8:22. [PMID: 39875596 PMCID: PMC11775178 DOI: 10.1038/s42004-025-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS. Therefore, we probed the aggregation using ThT fluorescence, size-exclusion chromatography, and surface-enhanced Raman spectroscopy (SERS). The removal of metal ions and disulfide bonds resulted in the dimers rapidly first converting to an extended monomers then coming together slowly to form non-native dimers. The rapid onset of oligomerization happens above critical non-native dimer concentration. Structural features of oligomer was obtained through SERS. The kinetic data supported a fragmentation-dominant mechanism for the fibril formation. Quercetin acts as inhibitor by delaying the formation of non-native dimer and soluble oligomers by decreasing the elongation rate. Thus, results provide significant insights into the critical steps in oligomer formation and their structure.
Collapse
Affiliation(s)
- Vijay Raj Tomar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
McCaig CD. Neurological Diseases can be Regulated by Phase Separation. Rev Physiol Biochem Pharmacol 2025; 187:273-338. [PMID: 39838017 DOI: 10.1007/978-3-031-68827-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
4
|
Lai HJ, Kuo YC, Ting CH, Yang CC, Kao CH, Tsai YC, Chao CC, Hsueh HW, Hsieh PF, Chang HY, Wang IF, Tsai LK. Increase of HCN current in SOD1-associated amyotrophic lateral sclerosis. Brain 2024; 147:4240-4253. [PMID: 39088003 DOI: 10.1093/brain/awae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
The clinical manifestations of sporadic amyotrophic lateral sclerosis (ALS) vary widely. However, the current classification of ALS is based mainly on clinical presentations, and the roles of electrophysiological and biomedical biomarkers remain limited. Herein, we investigated a group of patients with sporadic ALS and an ALS mouse model with superoxide dismutase 1 (SOD1)/G93A transgenes using nerve excitability tests (NETs) to investigate axonal membrane properties and chemical precipitation, followed by ELISA analysis to measure plasma misfolded protein levels. Six of 19 patients (31.6%) with sporadic ALS had elevated plasma misfolded SOD1 protein levels. In sporadic ALS patients, only those with elevated misfolded SOD1 protein levels showed an increased inward rectification in the current-voltage threshold curve and an increased threshold reduction in the hyperpolarizing threshold electrotonus in the NET study. Two familial ALS patients with SOD1 mutations also exhibited similar electrophysiological patterns of NET. For patients with sporadic ALS showing significantly increased inward rectification in the current-voltage threshold curve, we noted an elevation in plasma misfolded SOD1 level, but not in total SOD1, misfolded C9orf72 or misfolded phosphorylated TDP43 levels. Computer simulations demonstrated that the aforementioned axonal excitability changes are likely to be associated with an increase in hyperpolarization-activated cyclic nucleotide-gated (HCN) current. In SOD1/G93A mice, NET also showed an increased inward rectification in the current-voltage threshold curve, which could be reversed by a single injection of the HCN channel blocker, ZD7288. Daily treatment of SOD1/G93A mice with ZD7288 partly prevented the early motor function decline and spinal motor neuron death. In summary, sporadic ALS patients with elevated plasma misfolded SOD1 exhibited similar patterns of motor axonal excitability changes to familial ALS patients and ALS mice with mutant SOD1, suggesting the existence of SOD1-associated sporadic ALS. The observed NET pattern of increased inward rectification in the current-voltage threshold curve was attributable to an elevation in the HCN current in SOD1-associated ALS.
Collapse
Affiliation(s)
- Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yih-Chih Kuo
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City 300, Taiwan
| | - Chen-Hung Ting
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
| | - Chih-Chao Yang
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chia-Hsin Kao
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yi-Chieh Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pei-Feng Hsieh
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Yu Chang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
- Department of Translational Medicine, YeeFan Med Inc., Temple City, CA 91780, USA
| | - I Fan Wang
- Garage Brain Science, B201, Central Taiwan Innovation Campus, Ministry of Economic Affairs, Nantou City 540219, Taiwan
- Department of Translational Medicine, YeeFan Med Inc., Temple City, CA 91780, USA
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City 300, Taiwan
| |
Collapse
|
5
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
6
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
8
|
Hou S, Hu J, Yu Z, Li D, Liu C, Zhang Y. Machine learning predictor PSPire screens for phase-separating proteins lacking intrinsically disordered regions. Nat Commun 2024; 15:2147. [PMID: 38459060 PMCID: PMC10923898 DOI: 10.1038/s41467-024-46445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024] Open
Abstract
The burgeoning comprehension of protein phase separation (PS) has ushered in a wealth of bioinformatics tools for the prediction of phase-separating proteins (PSPs). These tools often skew towards PSPs with a high content of intrinsically disordered regions (IDRs), thus frequently undervaluing potential PSPs without IDRs. Nonetheless, PS is not only steered by IDRs but also by the structured modular domains and interactions that aren't necessarily reflected in amino acid sequences. In this work, we introduce PSPire, a machine learning predictor that incorporates both residue-level and structure-level features for the precise prediction of PSPs. Compared to current PSP predictors, PSPire shows a notable improvement in identifying PSPs without IDRs, which underscores the crucial role of non-IDR, structure-based characteristics in multivalent interactions throughout the PS process. Additionally, our biological validation experiments substantiate the predictive capacity of PSPire, with 9 out of 11 chosen candidate PSPs confirmed to form condensates within cells.
Collapse
Affiliation(s)
- Shuang Hou
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhaowei Yu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Guo Y, Guan T, Yu Q, Sanghai N, Shafiq K, Li M, Jiao X, Na D, Zhang G, Kong J. ALS-linked SOD1 mutations impair mitochondrial-derived vesicle formation and accelerate aging. Redox Biol 2024; 69:102972. [PMID: 38056310 PMCID: PMC10746562 DOI: 10.1016/j.redox.2023.102972] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Oxidative stress (OS) is regarded as the dominant theory for aging. While compelling correlative data have been generated to support the OS theory, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and aging has not been firmly established. Superoxide dismutase 1 (SOD1) is a primary antioxidant in all cells. It is, however, susceptible to oxidation due to OS and gains toxic properties to cells. This study investigates the role of oxidized SOD1 derived from amyotrophic lateral sclerosis (ALS) linked SOD1 mutations in cell senescence and aging. Herein, we have shown that the cell line NSC34 expressing the G93A mutation of human SOD1 (hSOD1G93A) entered premature senescence as evidenced by a decreased number of the 5-ethynyl-2'-deoxyuridine (EdU)-positive cells. There was an upregulation of cellular senescence markers compared to cells expressing the wild-type human SOD1 (hSOD1WT). Transgenic mice carrying the hSOD1G93A gene showed aging phenotypes at an early age (135 days) with high levels of P53 and P16 but low levels of SIRT1 and SIRT6 compared with age-matched hSOD1WT transgenic mice. Notably, the levels of oxidized SOD1 were significantly elevated in both the senescent NSC34 cells and 135-day hSOD1G93A mice. Selective removal of oxidized SOD1 by our CT4-directed autophagy significantly decelerated aging, indicating that oxidized SOD1 is a causal factor of aging. Intriguingly, mitochondria malfunctioned in both senescent NSC34 cells and middle-aged hSODG93A transgenic mice. They exhibited increased production of mitochondrial-derived vesicles (MDVs) in response to mild OS in mutant humanSOD1 (hSOD1) transgenic mice at a younger age; however, the mitochondrial response gradually declined with aging. In conclusion, our data show that oxidized SOD1 derived from ALS-linked SOD1 mutants is a causal factor for cellular senescence and aging. Compromised mitochondrial responsiveness to OS may serve as an indicator of premature aging.
Collapse
Affiliation(s)
- Ying Guo
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Qiang Yu
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Nitesh Sanghai
- College of Pharmacy, Rady Faculty of Health Science, University of Manitoba, Canada
| | - Kashfia Shafiq
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Xin Jiao
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Donghui Na
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China.
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
10
|
Basith S, Manavalan B, Lee G. Unveiling local and global conformational changes and allosteric communications in SOD1 systems using molecular dynamics simulation and network analyses. Comput Biol Med 2024; 168:107688. [PMID: 37988788 DOI: 10.1016/j.compbiomed.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disorder affecting nerve cells in the brain and spinal cord that is caused by mutations in the superoxide dismutase 1 (SOD1) enzyme. ALS-related mutations cause misfolding, dimerisation instability, and increased formation of aggregates. The underlying allosteric mechanisms, however, remain obscure as far as details of their fundamental atomistic structure are concerned. Hence, this gap in knowledge limits the development of novel SOD1 inhibitors and the understanding of how disease-associated mutations in distal sites affect enzyme activity. METHODS We combined microsecond-scale based unbiased molecular dynamics (MD) simulation with network analysis to elucidate the local and global conformational changes and allosteric communications in SOD1 Apo (unmetallated form), Holo, Apo_CallA (mutant and unmetallated form), and Holo_CallA (mutant form) systems. To identify hotspot residues involved in SOD1 signalling and allosteric communications, we performed network centrality, community network, and path analyses. RESULTS Structural analyses showed that unmetallated SOD1 systems and cysteine mutations displayed large structural variations in the catalytic sites, affecting structural stability. Inter- and intra H-bond analyses identified several important residues crucial for maintaining interfacial stability, structural stability, and enzyme catalysis. Dynamic motion analysis demonstrated more balanced atomic displacement and highly correlated motions in the Holo system. The rationale for structural disparity observed in the disulfide bond formation and R143 configuration in Apo and Holo systems were elucidated using distance and dihedral probability distribution analyses. CONCLUSION Our study highlights the efficiency of combining extensive MD simulations with network analyses to unravel the features of protein allostery.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|