1
|
El Moussaoui M, Bontems S, Meex C, Hayette MP, Lejeune M, Hong SL, Dellicour S, Moutschen M, Cambisano N, Renotte N, Bours V, Darcis G, Artesi M, Durkin K. Intrahost evolution leading to distinct lineages in the upper and lower respiratory tracts during SARS-CoV-2 prolonged infection. Virus Evol 2024; 10:veae073. [PMID: 39399151 PMCID: PMC11470753 DOI: 10.1093/ve/veae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.
Collapse
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Sebastien Bontems
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Cecile Meex
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie-Pierre Hayette
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie Lejeune
- Department of Hematology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, Bruxelles 1050, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nadine Cambisano
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nathalie Renotte
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Vincent Bours
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Maria Artesi
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Keith Durkin
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| |
Collapse
|
2
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
3
|
Laprise F, Arduini A, Duguay M, Pan Q, Liang C. SARS-CoV-2 Accessory Protein ORF8 Targets the Dimeric IgA Receptor pIgR. Viruses 2024; 16:1008. [PMID: 39066171 PMCID: PMC11281603 DOI: 10.3390/v16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 is a highly pathogenic respiratory virus that successfully initiates and establishes its infection at the respiratory mucosa. However, little is known about how SARS-CoV-2 antagonizes the host's mucosal immunity. Recent findings have shown a marked reduction in the expression of the polymeric Ig receptor (pIgR) in COVID-19 patients. This receptor maintains mucosal homeostasis by transporting the dimeric IgA (dIgA) and pentameric IgM (pIgM) across mucosal epithelial cells to neutralize the invading respiratory pathogens. By studying the interaction between pIgR and SARS-CoV-2 proteins, we discovered that the viral accessory protein Open Reading Frame 8 (ORF8) potently downregulates pIgR expression and that this downregulation activity of ORF8 correlates with its ability to interact with pIgR. Importantly, the ORF8-mediated downregulation of pIgR diminishes the binding of dIgA or pIgM, and the ORF8 proteins of the variants of concern of SARS-CoV-2 preserve the function of downregulating pIgR, indicating the importance of this conserved activity of ORF8 in SARS-CoV-2 pathogenesis. We further observed that the secreted ORF8 binds to cell surface pIgR, but that this interaction does not trigger the cellular internalization of ORF8, which requires the binding of dIgA to pIgR. These findings suggest the role of ORF8 in SARS-CoV-2 mucosal immune evasion.
Collapse
Affiliation(s)
- Frederique Laprise
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Mathew Duguay
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Institut de Recherche Clinique de Montréal, Montreal, QC H2W 1R7, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (F.L.); (A.A.); (M.D.); (Q.P.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
4
|
Wagner C, Kistler KE, Perchetti GA, Baker N, Frisbie LA, Torres LM, Aragona F, Yun C, Figgins M, Greninger AL, Cox A, Oltean HN, Roychoudhury P, Bedford T. Positive selection underlies repeated knockout of ORF8 in SARS-CoV-2 evolution. Nat Commun 2024; 15:3207. [PMID: 38615031 PMCID: PMC11016114 DOI: 10.1038/s41467-024-47599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Cassia Wagner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Noah Baker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Frank Aragona
- Washington State Department of Health, Shoreline, WA, USA
| | - Cory Yun
- Washington State Department of Health, Shoreline, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alex Cox
- Washington State Department of Health, Shoreline, WA, USA
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
5
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
6
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
7
|
Hanna N, De Mejia CM, Heffes-Doon A, Lin X, Botros B, Gurzenda E, Clauss-Pascarelli C, Nayak A. Biodistribution of mRNA COVID-19 vaccines in human breast milk. EBioMedicine 2023; 96:104800. [PMID: 37734205 PMCID: PMC10514401 DOI: 10.1016/j.ebiom.2023.104800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND COVID-19 mRNA vaccines play a vital role in the fight against SARS-CoV-2 infection. However, lactating women have been largely excluded from most vaccine clinical trials. As a result, limited research has been conducted on the systemic distribution of vaccine mRNA during lactation and whether it is excreted in human breast milk (BM). Here, we evaluated if COVID-19 vaccine mRNA is detectable in BM after maternal vaccination and determined its potential translational activity. METHODS We collected BM samples from 13 lactating, healthy, post-partum women before and after COVID-19 mRNA vaccination. Vaccine mRNA in whole BM and BM extracellular vesicles (EVs) was assayed using quantitative Droplet Digital PCR, and its integrity and translational activity were evaluated. FINDINGS Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA amounts were detected in 10 exposures up to 45 h post-vaccination. The mRNA was concentrated in the BM EVs; however, these EVs neither expressed SARS-COV-2 spike protein nor induced its expression in the HT-29 cell line. Linkage analysis suggests vaccine mRNA integrity was reduced to 12-25% in BM. INTERPRETATION Our findings demonstrate that the COVID-19 vaccine mRNA is not confined to the injection site but spreads systemically and is packaged into BM EVs. However, as only trace quantities are present and a clear translational activity is absent, we believe breastfeeding post-vaccination is safe, especially 48 h after vaccination. Nevertheless, since the minimum mRNA vaccine dose to elicit an immune reaction in infants <6 months is unknown, a dialogue between a breastfeeding mother and her healthcare provider should address the benefit/risk considerations of breastfeeding in the first two days after maternal vaccination. FUNDING This study was supported by the Department of Pediatrics, NYU-Grossman Long Island School of Medicine.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA; Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA.
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ari Heffes-Doon
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Bishoy Botros
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ellen Gurzenda
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Christie Clauss-Pascarelli
- Department of Pharmacy, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Amrita Nayak
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| |
Collapse
|