1
|
Shishikura K, Li J, Chen Y, McKnight NR, Bustin KA, Barr EW, Chilkamari SR, Ayub M, Kim SW, Lin Z, Hu RM, Hicks K, Wang X, O’Rourke DM, Bollinger JM, Binder ZA, Parsons WH, Martemyanov KA, Liu A, Matthews ML. Hydralazine inhibits cysteamine dioxygenase to treat preeclampsia and senesce glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629450. [PMID: 39803451 PMCID: PMC11722266 DOI: 10.1101/2024.12.19.629450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The vasodilator hydralazine (HYZ) has been used clinically for ~ 70 years and remains on the World Health Organization's List of Essential Medicines as a therapy for preeclampsia. Despite its longstanding use and the concomitant progress toward a general understanding of vasodilation, the target and mechanism of HYZ have remained unknown. We show that HYZ selectively targets 2-aminoethanethiol dioxygenase (ADO) by chelating its metal cofactor and alkylating one of its ligands. This covalent inactivation slows entry of proteins into the Cys/N-degron pathway that ADO initiates. HYZ's capacity to stabilize regulators of G-protein signaling (RGS4/5) normally marked for degradation by ADO explains its effect on blood vessel tension and comports with prior associations of insufficient RGS levels with human preeclampsia and analogous symptoms in mice. The established importance of ADO in glioblastoma led us to test HYZ in these cell types. Indeed, a single treatment induced senescence, suggesting a potential new HYZ-based therapy for this deadly brain cancer.
Collapse
Affiliation(s)
- Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Yiming Chen
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Nate R. McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn A. Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric W. Barr
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mahaa Ayub
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sun Woo Kim
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ren-Ming Hu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Hicks
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - J. Martin Bollinger
- The Pennsylvania State University, Department of Chemistry and Biochemistry and Molecular Biology, State College, PA, USA
| | - Zev A. Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William H. Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, USA
| | - Kirill A. Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, TX, USA
| | - Megan L. Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Lead Contact
| |
Collapse
|
2
|
Schloss JV, Szabo S. On the origin of cysteamine-induced duodenal cytotoxicity and type II ferroptosis. Inflammopharmacology 2024; 32:3739-3744. [PMID: 39261408 DOI: 10.1007/s10787-024-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Cysteamine (CA) induces duodenal ulcers in rodents (Selye and Szabo, Nature 244:458-459, 1973). Cysteine (Cys), a precursor for the formation of CA (via catabolism of coenzyme A), does not cause lesions in the duodenum (Szabo et al., J Pharmacol Exp Ther 223:68-76, 1982). CA also has antimutagenic and anticancer pharmacology (Fujisawa et al., PLoS ONE 7, 2012; Lee, Adv Pharmacol Pharm Sci 2023:2419444, 2023). We propose a mechanism of CA-induced cell death dependent on oxygen and CA dioxygenase (ADO) that can explain the 50-year-old mystery as to why CA is, but Cys is not, ulcerogenic. Those cells expressing coenzyme A-catabolizing enzymes are subject to a unique type of oxygen- and enzyme-bound-Fe2+-dependent death, type II ferroptosis.
Collapse
Affiliation(s)
- John V Schloss
- American University of Health Sciences, Signal Hill, CA, 90755, USA.
| | - Sandor Szabo
- American University of Health Sciences, Signal Hill, CA, 90755, USA
- University of California, Irvine, CA, USA
| |
Collapse
|
3
|
Slingo ME. Oxygen-sensing pathways and the pulmonary circulation. J Physiol 2024; 602:5619-5629. [PMID: 37843154 DOI: 10.1113/jp284591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
The unique property of the pulmonary circulation to constrict in response to hypoxia, rather than dilate, brings advantages in both health and disease. Hypoxic pulmonary vasoconstriction (HPV) acts to optimise ventilation-perfusion matching - this is important clinically both in focal disease (such as pneumonia) and in one-lung ventilation during anaesthesia for thoracic surgery. However, during global hypoxia such as that encountered at high altitude, generalised pulmonary vasoconstriction can lead to pulmonary hypertension. There is now a growing body of evidence that links the hypoxia-inducible factor (HIF) pathway and pulmonary vascular tone - in both acute and chronic settings. Genetic and pharmacological alterations to all key components of this pathway (VHL - von Hippel-Lindau ubiquitin E3 ligase; PHD2 - prolyl hydroxylase domain protein 2; HIF1 and HIF2) have clear effects on the pulmonary circulation, particularly in hypoxia. Furthermore, knowledge of the molecular biology of the prolyl hydroxylase enzymes has led to an extensive and ongoing body of research into the importance of iron in both HPV and pulmonary hypertension. This review will explore these relationships in more detail and discuss future avenues of research.
Collapse
Affiliation(s)
- Mary E Slingo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Patel K, Jiramongkol Y, Norman A, Maxwell JWC, Mohanty B, Payne RJ, Cook KM, White MD. The enzymatic oxygen sensor cysteamine dioxygenase binds its protein substrates through their N-termini. J Biol Chem 2024; 300:107653. [PMID: 39122008 PMCID: PMC11406360 DOI: 10.1016/j.jbc.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The non-heme iron-dependent dioxygenase 2-aminoethanethiol (aka cysteamine) dioxygenase (ADO) has recently been identified as an enzymatic oxygen sensor that coordinates cellular changes to hypoxia by regulating the stability of proteins bearing an N-terminal cysteine (Nt-cys) through the N-degron pathway. It catalyzes O2-dependent Nt-cys sulfinylation, which promotes proteasomal degradation of the target. Only a few ADO substrates have been verified, including regulators of G-protein signaling (RGS) 4 and 5, and the proinflammatory cytokine interleukin-32, all of which exhibit cell and/or tissue specific expression patterns. ADO, in contrast, is ubiquitously expressed, suggesting it can regulate the stability of additional Nt-cys proteins in an O2-dependent manner. However, the role of individual chemical groups, active site metal, amino acid composition, and globular structure on protein substrate association remains elusive. To help identify new targets and examine the underlying biochemistry of the system, we conducted a series of biophysical experiments to investigate the binding requirements of established ADO substrates RGS5 and interleukin-32. We demonstrate, using surface plasmon response and enzyme assays, that a free, unmodified Nt-thiol and Nt-amine are vital for substrate engagement through active site metal coordination, with residues next to Nt-cys moderately impacting association and catalytic efficiency. Additionally, we show, through 1H-15N heteronuclear single quantum coherence nuclear magnetic resonance titrations, that the globular portion of RGS5 has limited impact on ADO association, with interactions restricted to the N-terminus. This work establishes key features involved in ADO substrate binding, which will help identify new protein targets and, subsequently, elucidate its role in hypoxic adaptation.
Collapse
Affiliation(s)
- Karishma Patel
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yannasittha Jiramongkol
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Faculty of Science, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua W C Maxwell
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Biswaranjan Mohanty
- Sydney Analytical Core Research Facility, The University of Sydney, Camperdown, NSW, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Sydney, NSW, Australia
| | - Kristina M Cook
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Mark D White
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
5
|
Samsami H, Maali-Amiri R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108862. [PMID: 38917735 DOI: 10.1016/j.plaphy.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Climate change-induced environmental stresses pose significant challenges to plant survival and agricultural productivity. In response, many plants undergo genetic reprogramming, resulting in profound alterations in metabolic pathways and the production of diverse secondary metabolites. As a critical molecular junction, intermediate metabolites by targeted intensification or suppression of subpathways channel cell resources into a multifaceted array of functions such as cell signals, photosynthesis, energy metabolism, ROS homeostasis, producing defensive and protective molecules, epigenetic regulation and stress memory, phytohormones biosynthesis and cell wall architecture under stress conditions. Unlike the well-established functions of end products, intermediate metabolites are context-dependent and produce enigmatic alternatives during stress. As key components of signal transduction pathways, intermediate metabolites with relay and integration of stress signals ensure responses to stress combinations. Investigating efficient metabolic network pathways and their role in regulating unpredictable paths from upstream to downstream levels can unlock their full potential to shape the future of agriculture and ensure global food security. Here, we summarized the activity of some intermediate metabolites, from the perception step to tolerance responses to stress factors.
Collapse
Affiliation(s)
- Hanna Samsami
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
6
|
Perri M, Licausi F. Thiol dioxygenases: from structures to functions. Trends Biochem Sci 2024; 49:545-556. [PMID: 38622038 DOI: 10.1016/j.tibs.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Thiol oxidation to dioxygenated sulfinic acid is catalyzed by an enzyme family characterized by a cupin fold. These proteins act on free thiol-containing molecules to generate central metabolism precursors and signaling compounds in bacteria, fungi, and animal cells. In plants and animals, they also oxidize exposed N-cysteinyl residues, directing proteins to proteolysis. Enzyme kinetics, X-ray crystallography, and spectroscopy studies prompted the formulation and testing of hypotheses about the mechanism of action and the different substrate specificity of these enzymes. Concomitantly, the physiological role of thiol dioxygenation in prokaryotes and eukaryotes has been studied through genetic and physiological approaches. Further structural characterization is necessary to enable precise and safe manipulation of thiol dioxygenases (TDOs) for therapeutic, industrial, and agricultural applications.
Collapse
Affiliation(s)
- Monica Perri
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK
| | - Francesco Licausi
- Plant Molecular Biology Section, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|