1
|
Zeng G, Ma Z, Zhang R, He Y, Xiao Y, Sun D, Lei X. Mechanism of electrochemical algal control and its effect on metabolic pathways of algal cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138318. [PMID: 40253783 DOI: 10.1016/j.jhazmat.2025.138318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Algal blooms cause significant ecological and economic issues. Electrochemical methods inhibit algal blooms effectively, but their effects on algal cell gene expression and metabolic pathways remain underexplored, requiring further mechanistic and ecological data to elucidate these mechanisms. This study revealed the control mechanism of electrochemical methods on Microcystis aeruginosa using flow cytometry, real-time PCR and untargeted metabolomics. Results indicate that electrochemical treatment induces oxidative stress, severely damaging algal cell membranes and impairing cell activity. Gene transcription analysis reveals that •OH oxidation leads to lipid peroxidation, damaging proteins, biological macromolecules, and the photosynthetic system. Metabolomics data show disruptions in amino acid, carbohydrate, and sphingolipid metabolism, affecting the tricarboxylic acid cycle, transporter proteins, and photosynthesis. These findings elucidate the mechanisms by which electrochemical methods control cyanobacterial blooms, offering theoretical and practical insights for effective management strategies.
Collapse
Affiliation(s)
- Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China; School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Water Engineering Research Center, Chongqing Academy of Science and Technology, Chongqing 401123, China; School of Architecture and Engineering, Chongqing City Vocational College, Chongqing 402160, China
| | - Zilong Ma
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Rui Zhang
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yu He
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yong Xiao
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, National & Local Joint Engineering Research, Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Xiaoling Lei
- Water Engineering Research Center, Chongqing Academy of Science and Technology, Chongqing 401123, China
| |
Collapse
|
2
|
Adekunbi DA, Huber HF, Benavides GA, Tian R, Li C, Nathanielsz PW, Zhang J, Darley-Usmar V, Cox LA, Salmon AB. Sex-specific decline in prefrontal cortex mitochondrial bioenergetics in aging baboons correlates with walking speed. Neurobiol Aging 2025; 151:1-12. [PMID: 40156934 DOI: 10.1016/j.neurobiolaging.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
Mitochondria play a crucial role in brain homeostasis and changes in mitochondrial bioenergetics are linked to age-related neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. We investigated changes in the activities of the electron transport chain (ETC) complexes in normally aging baboon brains and determined how these changes relate to donor sex, morning cortisol levels, and walking speed. We assessed mitochondrial bioenergetics from archived prefrontal cortex (PFC) tissues from a large cohort (60 individuals) of well-characterized aging baboons (6.6-22.8 years, approximately equivalent to 26.4-91.2 human years). Aging was associated with a decline in mitochondrial ETC complexes in the PFC, which was more pronounced when normalized for citrate synthase activity, suggesting that the decline is predominantly driven by changes in the specific activity of individual complexes rather than global changes in mitochondrial content. When donor sex was used as a covariate, we found that ETC activity was preserved with age in females and declined in males. Males had higher activities of each individual ETC complex and greater lactate dehydrogenase activity at a given age relative to females. Circulating cortisol negatively correlated with walking speed when male and female data were combined. We also observed a robust positive predictive relationship between walking speed and respiration linked to complexes I, III, and IV in males but not in females. This data reveals a link between frailty and PFC bioenergetic function and highlights a potential molecular mechanism for sexual dimorphism in brain resilience.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USA; Departments of Molecular Medicine and Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, TX, USA; Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
3
|
Follprecht D, Vavricka J, Johankova V, Broz P, Krouzecky A. Mitochondria in focus: From structure and function to their role in human diseases. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40237329 DOI: 10.5507/bp.2025.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Mitochondria, double-membraned organelles within all eukaryotic cells, are essential for the proper functioning of the human organism. The frequently used phrase "powerhouses of the cell" fails to adequately capture their multifaceted roles. In addition to producing energy in the form of adenosine triphosphate through oxidative phosphorylation, mitochondria are also involved in apoptosis (programmed cell death), calcium regulation, and signaling through reactive oxygen species. Recent research suggests that they can communicate with one another and influence cellular processes. Impaired mitochondrial function on the one hand, can have widespread and profound effects on cellular and organismal health, contributing to various diseases and age-related conditions. Regular exercise on the other hand, promotes mitochondrial health by enhancing their volume, density, and functionality. Although research has made significant progress in the last few decades, mainly through the use of modern technologies, there is still a need to intensify research efforts in this field. Exploring new approaches to enhance mitochondrial health could potentially impact longevity. In this review, we focus on mitochondrial research and discoveries, examine the structure and diverse roles of mitochondria in the human body, explore their influence on energy metabolism and cellular signaling and emphasize their importance in maintaining overall health.
Collapse
Affiliation(s)
- Daniel Follprecht
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jakub Vavricka
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktorie Johankova
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Broz
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Clinical Biochemistry and Hematology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ales Krouzecky
- Department of Sports Medicine and Active Health Sciences, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
4
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
5
|
Nengroo MA, Klein AT, Carr HS, Vidal-Cruchez O, Sahu U, McGrail DJ, Sahni N, Gao P, Asara JM, Shah H, Mendillo ML, Ben-Sahra I. Succinate dehydrogenase activity supports de novo purine synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640389. [PMID: 40060604 PMCID: PMC11888382 DOI: 10.1101/2025.02.26.640389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The de novo purine synthesis pathway is fundamental for nucleic acid production and cellular energetics, yet the role of mitochondrial metabolism in modulating this process remains underexplored. In many cancers, metabolic reprogramming supports rapid proliferation and survival, but the specific contributions of the tricarboxylic acid (TCA) cycle enzymes to nucleotide biosynthesis are not fully understood. Here, we demonstrate that the TCA cycle enzyme succinate dehydrogenase (SDH) is essential for maintaining optimal de novo purine synthesis in normal and cancer cells. Genetic or pharmacological inhibition of SDH markedly attenuates purine synthesis, leading to a significant reduction in cell proliferation. Mechanistically, SDH inhibition causes an accumulation of succinate, which directly impairs the purine biosynthetic pathway. In response, cancer cells compensate by upregulating the purine salvage pathway, a metabolic adaptation that represents a potential therapeutic vulnerability. Notably, co-inhibition of SDH and the purine salvage pathway induces pronounced antiproliferative and antitumoral effects in preclinical models. These findings not only reveal a signaling role for mitochondrial succinate in regulating nucleotide metabolism but also provide a promising therapeutic strategy for targeting metabolic dependencies in cancer.
Collapse
Affiliation(s)
- Mushtaq A Nengroo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Austin T Klein
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Heather S Carr
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Olivia Vidal-Cruchez
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Umakant Sahu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno Oncology, Cleveland Clinic, Cleveland, OH, 441796, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Gao
- Metabolomics Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Hardik Shah
- Metabolomics Platform, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, 60637, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL, 60611 USA
| |
Collapse
|
6
|
Farha S, Asosingh K, Hassoun PM, Barnard J, Comhair S, Reichard A, Wanner N, Radeva M, Aldred MA, Beck GJ, Berman-Rosenzweig E, Borlaug BA, Finet JE, Frantz RP, Grunig G, Hemnes AR, Hill N, Horn EM, Jellis C, Leopold JA, Mehra R, Park MM, Rischard FP, Tang WHW, Erzurum SC. Alterations in Mitochondrial Function in Pulmonary Vascular Diseases. Antioxid Redox Signal 2025; 42:361-377. [PMID: 39655485 DOI: 10.1089/ars.2024.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Aims: Alterations of mitochondrial bioenergetics and arginine metabolism are universally present and mechanistically linked to pulmonary arterial hypertension (PAH), but there is little knowledge of arginine metabolism and mitochondrial functions across the different pulmonary hypertension (PH) groups. We hypothesize that abnormalities in mitochondrial functions are present across all PH groups and associated with clinical phenotypes. We test the hypothesis in PH patients and healthy controls from the Pulmonary Vascular Disease Phenomics Program cohort, who had comprehensive clinical phenotyping and follow-up for at least 4 years for death or transplant status. Mitochondrial transmembrane potential, superoxide production, and mass were measured by flow cytometry in fresh platelets. Metabolomics analysis was performed on plasma samples. Global arginine bioavailability was calculated as the ratio of arginine/(ornithine+citrulline). Results: Global arginine bioavailability is consistently lower than controls in all PH groups. Although the mitochondrial mass is similar across all PH groups and controls, superoxide production and transmembrane potential vary across groups. Mitochondrial superoxide is higher in group 1 PAH and lowest in group 3 compared with other groups, while transmembrane potential is lower in group 1 PAH than controls or group 3. The alterations in mitochondrial functions of group 1 PAH are associated with changes in fatty acid metabolism. Mitochondrial transmembrane potential in group 1 PAH is associated with transplant-free survival. Conclusion: While alterations in mitochondrial function are found in all PH groups, group 1 PAH has a unique mitochondrial phenotype with greater superoxide and lower transmembrane potential linked to fatty acid metabolism, and clinically to survival. Antioxid. Redox Signal. 42, 361-377.
Collapse
Affiliation(s)
- Samar Farha
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Kewal Asosingh
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Barnard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Suzy Comhair
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Reichard
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Wanner
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Milena Radeva
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Micheala A Aldred
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| | - Gerald J Beck
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - J Emanuel Finet
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert P Frantz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gabriele Grunig
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicholas Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Evelyn M Horn
- Division of Cardiology, Weill Cornell Medical Center, New York, New York, USA
| | - Christine Jellis
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reena Mehra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Margaret M Park
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Franz P Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona, USA
| | - W H Wilson Tang
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil C Erzurum
- Integrated Hospital-Care Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
7
|
Yi Y, Wang G, Zhang W, Yu S, Fei J, An T, Yi J, Li F, Huang T, Yang J, Niu M, Wang Y, Xu C, Xiao ZXJ. Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation. Nat Commun 2025; 16:212. [PMID: 39747079 PMCID: PMC11695821 DOI: 10.1038/s41467-024-55768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA. Elevated MT-CO2 increases flavin adenosine dinucleotide (FAD) levels in activating lysine-specific demethylase 1 (LSD1) to epigenetically upregulate JUN transcription, consequently promoting glutaminase-1 (GLS1) and glutaminolysis for tumor cell survival. Furthermore, MT-CO2 is indispensable for oncogenic Ras-induced glutaminolysis and tumor growth, and elevated expression of MT-CO2 is associated with poor prognosis in lung cancer patients. Together, these findings reveal a role for MT-CO2 in adapting to metabolic stress and highlight MT-CO2 as a putative therapeutic target for Ras-driven cancers.
Collapse
Affiliation(s)
- Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Guoqiang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenhua Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingting An
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianqiao Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Ting Huang
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Cardoso LHD, Cecatto C, Ozola M, Korzh S, Zvejniece L, Gukalova B, Doerrier C, Dambrova M, Makrecka-Kuka M, Gnaiger E, Liepinsh E. Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167544. [PMID: 39424161 DOI: 10.1016/j.bbadis.2024.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.
Collapse
Affiliation(s)
| | | | - Melita Ozola
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Gukalova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Marina Makrecka-Kuka
- Oroboros Instruments, Innsbruck, Austria; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
9
|
Yao B, Liu M, Zhang J, Hu X, Wang B, Liang RJ, Chen Y. Effect of long-term exposure to non-biodegradable and biodegradable microplastics in continuous anoxic/aerobic bioreactors: Nitrogen removal performance, microbial communities and functional gene responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123712. [PMID: 39675334 DOI: 10.1016/j.jenvman.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH4+-N removal efficiencies were suppressed to 91.7 ± 5.5% and 80.8 ± 4.1% at concentrations of 10 and 100 mg/L PLA, significantly (p < 0.05) lower than 96.3 ± 1.0% and 95.0 ± 1.5% with the presence of PET. PLA resulted in a significant (p < 0.05) decrease in adenosine triphosphate of living cells (cATP) and dehydrogenase activities. PLA enhanced redox stress and induced a series of oxidative stress reactions that were detrimental to the normal growth and metabolism of microorganisms. The relative abundance of several functional microorganisms (Nitrosomonas,Nitrospira and Ellin6067) and genes (amoA, amoB and amoC) associated with NH4+-N conversion were reduced. The potential risk of biodegradable MPs to the long-term wastewater treatment process cannot be ignored and needs to be emphasized.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bin Wang
- Sichuan Engineering Research Center for Municipal Wastewater Distributed Treatment Technology, Chengdu, 610200, China
| | - Ren-Jun Liang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Adekunbi DA, Huber HF, Benavides GA, Tian R, Li C, Nathanielsz PW, Zhang J, Darley-Usmar V, Cox LA, Salmon AB. Sex-specific decline in prefrontal cortex mitochondrial bioenergetics in aging baboons correlates with walking speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613684. [PMID: 39386547 PMCID: PMC11463596 DOI: 10.1101/2024.09.19.613684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mitochondria play a crucial role in brain aging due to their involvement in bioenergetics, neuroinflammation and brain steroid synthesis. Mitochondrial dysfunction is linked to age-related neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. We investigated changes in the activities of the electron transport chain (ETC) complexes in normally aging baboon brains and determined how these changes relate to donor sex, morning cortisol levels, and walking speed. Using a novel approach, we assessed mitochondrial bioenergetics from frozen prefrontal cortex (PFC) tissues from a large cohort (60 individuals) of well-characterized aging baboons (6.6-22.8 years, approximately equivalent to 26.4-91.2 human years). Aging was associated with a decline in mitochondrial ETC complexes in the PFC, which was more pronounced when activities were normalized for citrate synthase activity, suggesting that the decline in respiration is predominantly driven by changes in the specific activity of individual complexes rather than changes in mitochondrial number. Moreover, when donor sex was used as a covariate, we found that mitochondrial respiration was preserved with age in females, whereas males showed significant loss of ETC activity with age. Males had higher activities of each individual ETC complex and greater lactate dehydrogenase activity relative to females. Circulating cortisol levels correlated only with complex II-linked respiration in males. We also observed a robust positive predictive relationship between walking speed and respiration linked to complexes I, III, and IV in males but not in females. This data reveals a previously unknown link between aging and bioenergetics across multiple tissues linking frailty and bioenergetic function. This study highlights a potential molecular mechanism for sexual dimorphism in brain resilience and suggests that in males changes in PFC bioenergetics contribute to reduced motor function with age.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
- San Antonio Nathan Shock Center, University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
11
|
Casuso RA. Mitochondrial puzzle in muscle: Linking the electron transport system to overweight. Obes Rev 2024; 25:e13794. [PMID: 38923169 DOI: 10.1111/obr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Human skeletal muscle mitochondria regulate energy expenditure. Research has shown that the functionality of muscle mitochondria is altered in subjects with overweight, as well as in response to nutrient excess and calorie restriction. Two metabolic features of obesity and overweight are (1) incomplete muscular fatty acid oxidation and (2) increased circulating lactate levels. In this study, I propose that these metabolic disturbances may originate from a common source within the muscle mitochondrial electron transport system. Specifically, a reorganization of the supramolecular structure of the electron transport chain could facilitate the maintenance of readily accessible coenzyme Q pools, which are essential for metabolizing lipid substrates. This approach is expected to maintain effective electron transfer, provided that there is sufficient complex III to support the Q-cycle. Such an adaptation could enhance fatty acid oxidation and prevent mitochondrial overload, thereby reducing lactate production. These insights advance our understanding of the molecular mechanisms underpinning metabolic dysregulation in overweight states. This provides a basis for targeted interventions in the quest for metabolic health.
Collapse
Affiliation(s)
- Rafael A Casuso
- Department of Health Sciences, Universidad Loyola Andalucía, Córdoba, Spain
| |
Collapse
|
12
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Donnelly C, Komlódi T, Cecatto C, Cardoso LHD, Compagnion AC, Matera A, Tavernari D, Campiche O, Paolicelli RC, Zanou N, Kayser B, Gnaiger E, Place N. Functional hypoxia reduces mitochondrial calcium uptake. Redox Biol 2024; 71:103037. [PMID: 38401291 PMCID: PMC10906399 DOI: 10.1016/j.redox.2024.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.e., when intracellular O2 levels limit mitochondrial respiration) are relayed by the electron transfer system to impact mitochondrial adaption and remodeling after hypoxic exposure remains poorly defined. This is largely due to challenges integrating findings under controlled and defined O2 levels in studies connecting functions of isolated mitochondria to humans during physical exercise. Here we present experiments under conditions of hypoxia in isolated mitochondria, myotubes and exercising humans. Performing steady-state respirometry with isolated mitochondria we found that oxygen limitation of respiration reduced electron flow and oxidative phosphorylation, lowered the mitochondrial membrane potential difference, and decreased mitochondrial calcium influx. Similarly, in myotubes under functional hypoxia mitochondrial calcium uptake decreased in response to sarcoplasmic reticulum calcium release for contraction. In both myotubes and human skeletal muscle this blunted mitochondrial adaptive responses and remodeling upon contractions. Our results suggest that by regulating calcium uptake the mitochondrial electron transfer system is a hub for coordinating cellular adaption under functional hypoxia.
Collapse
Affiliation(s)
- Chris Donnelly
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Oroboros Instruments, Innsbruck, Austria.
| | | | | | | | | | - Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Swiss Cancer Centre Léman, Lausanne, Switzerland
| | - Olivier Campiche
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Chinopoulos C. Complex I activity in hypoxia: implications for oncometabolism. Biochem Soc Trans 2024; 52:529-538. [PMID: 38526218 PMCID: PMC11088919 DOI: 10.1042/bst20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Certain cancer cells within solid tumors experience hypoxia, rendering them incapable of oxidative phosphorylation (OXPHOS). Despite this oxygen deficiency, these cells exhibit biochemical pathway activity that relies on NAD+. This mini-review scrutinizes the persistent, residual Complex I activity that oxidizes NADH in the absence of oxygen as the electron acceptor. The resulting NAD+ assumes a pivotal role in fueling the α-ketoglutarate dehydrogenase complex, a critical component in the oxidative decarboxylation branch of glutaminolysis - a hallmark oncometabolic pathway. The proposition is that through glutamine catabolism, high-energy phosphate intermediates are produced via substrate-level phosphorylation in the mitochondrial matrix substantiated by succinyl-CoA ligase, partially compensating for an OXPHOS deficiency. These insights provide a rationale for exploring Complex I inhibitors in cancer treatment, even when OXPHOS functionality is already compromised.
Collapse
|