1
|
Awais M, Belhaouari SB, Kassoul K. Graphical Insight: Revolutionizing Seizure Detection with EEG Representation. Biomedicines 2024; 12:1283. [PMID: 38927490 PMCID: PMC11201274 DOI: 10.3390/biomedicines12061283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Epilepsy is characterized by recurring seizures that result from abnormal electrical activity in the brain. These seizures manifest as various symptoms including muscle contractions and loss of consciousness. The challenging task of detecting epileptic seizures involves classifying electroencephalography (EEG) signals into ictal (seizure) and interictal (non-seizure) classes. This classification is crucial because it distinguishes between the states of seizure and seizure-free periods in patients with epilepsy. Our study presents an innovative approach for detecting seizures and neurological diseases using EEG signals by leveraging graph neural networks. This method effectively addresses EEG data processing challenges. We construct a graph representation of EEG signals by extracting features such as frequency-based, statistical-based, and Daubechies wavelet transform features. This graph representation allows for potential differentiation between seizure and non-seizure signals through visual inspection of the extracted features. To enhance seizure detection accuracy, we employ two models: one combining a graph convolutional network (GCN) with long short-term memory (LSTM) and the other combining a GCN with balanced random forest (BRF). Our experimental results reveal that both models significantly improve seizure detection accuracy, surpassing previous methods. Despite simplifying our approach by reducing channels, our research reveals a consistent performance, showing a significant advancement in neurodegenerative disease detection. Our models accurately identify seizures in EEG signals, underscoring the potential of graph neural networks. The streamlined method not only maintains effectiveness with fewer channels but also offers a visually distinguishable approach for discerning seizure classes. This research opens avenues for EEG analysis, emphasizing the impact of graph representations in advancing our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Creative Technologies, Air University, Islamabad 44000, Pakistan;
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha 5825, Qatar
| | - Khelil Kassoul
- Geneva School of Business Administration, University of Applied Sciences Western Switzerland, HES-SO, 1227 Geneva, Switzerland
| |
Collapse
|
2
|
Yedurkar DP, Metkar SP, Stephan T. Multiresolution directed transfer function approach for segment-wise seizure classification of epileptic EEG signal. Cogn Neurodyn 2024; 18:301-315. [PMID: 38699601 PMCID: PMC11061070 DOI: 10.1007/s11571-021-09773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
Currently, with the bloom in artificial intelligence (AI) algorithms, various human-centered smart systems can be utilized, especially in cognitive computing, for the detection of various chronic brain diseases such as epileptic seizure. The primary goal of this research article is to propose a novel human-centered cognitive computing (HCCC) method for segment-wise seizure classification by employing multiresolution extracted data with directed transfer function (DTF) features, termed as the multiresolution directed transfer function (MDTF) approach. Initially, the multiresolution information of the epileptic seizure signal is extracted using a multiresolution adaptive filtering (MRAF) method. These seizure details are passed to the DTF where the information flow of high frequency bands is computed. Thereafter, different measures of complexity such as approximate entropy (AEN) and sample entropy (SAEN) are computed from the extracted high frequency bands. Lastly, a k-nearest neighbor (k-NN) and support vector machine (SVM) are used for classifying the EEG signal into non-seizure and seizure data depending on the multiresolution based information flow characteristics. The MDTF approach is tested on a standard dataset and validated using a dataset from a local hospital. The proposed technique has obtained an average sensitivity of 98.31%, specificity of 96.13% and accuracy of 98.89% using SVM classifier. The average detection rate of the MDTF approach is 97.72% which is greater than the existing approaches. The proposed MDTF method will help neuro-specialists to locate seizure information drift which occurs within the consecutive segments and between two channels. The main advantage of the MDTF approach is its capability to locate the seizure activity contained by the EEG signal with accuracy. This will assist the neurologists with the precise localization of the epileptic seizure automatically and hence will reduce the burden of time-consuming epileptic seizure analysis.
Collapse
Affiliation(s)
- Dhanalekshmi P. Yedurkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Shilpa P. Metkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune, 411005 India
| | - Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka 560054 India
| |
Collapse
|
3
|
Wang Z, Liu F, Shi S, Xia S, Peng F, Wang L, Ai S, Xu Z. Automatic epileptic seizure detection based on persistent homology. Front Physiol 2023; 14:1227952. [PMID: 38192741 PMCID: PMC10773586 DOI: 10.3389/fphys.2023.1227952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Epilepsy is a prevalent brain disease, which is quite difficult-to-treat or cure. This study developed a novel automatic seizure detection method based on the persistent homology method. In this study, a Vietoris-Rips (VR) complex filtration model was constructed based on the EEG data. And the persistent homology method was applied to calculate the VR complex filtration barcodes to describe the topological changes of EEG recordings. Afterward, the barcodes as the topological characteristics of EEG signals were fed into the GoogLeNet for classification. The persistent homology is applicable for multi-channel EEG data analysis, where the global topological information is calculated and the features are extracted by considering the multi-channel EEG data as a whole, without the multiple calculations or the post-stitching. Three databases were used to evaluate the proposed approach and the results showed that the approach had high performances in the epilepsy detection. The results obtained from the CHB-MIT Database recordings revealed that the proposed approach can achieve a segment-based averaged accuracy, sensitivity and specificity values of 97.05%, 96.71% and 97.38%, and achieve an event-based averaged sensitivity value of 100% with 1.22 s average detection latency. In addition, on the Siena Scalp Database, the proposed method yields averaged accuracy, sensitivity and specificity values of 96.42%, 95.23% and 97.6%. Multiple tasks of the Bonn Database also showed achieved accuracy of 99.55%, 98.63%, 98.28% and 97.68%, respectively. The experimental results on these three EEG databases illustrate the efficiency and robustness of our approach for automatic detection of epileptic seizure.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Feifei Liu
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Shengxiang Xia
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Fulai Peng
- Medical Rehabilitation Research Center, Shandong Institute of Advanced Technology, Chinese Academy of Sciences, Jinan, China
| | - Lin Wang
- The Fifth People’s Hospital of Jinan, Jinan, China
| | - Sen Ai
- School of Science, Shandong Jianzhu University, Jinan, China
| | - Zheng Xu
- School of Science, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
4
|
Deep-EEG: An Optimized and Robust Framework and Method for EEG-Based Diagnosis of Epileptic Seizure. Diagnostics (Basel) 2023; 13:diagnostics13040773. [PMID: 36832260 PMCID: PMC9954819 DOI: 10.3390/diagnostics13040773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Detecting brain disorders using deep learning methods has received much hype during the last few years. Increased depth leads to more computational efficiency, accuracy, and optimization and less loss. Epilepsy is one of the most common chronic neurological disorders characterized by repeated seizures. We have developed a deep learning model using Deep convolutional Autoencoder-Bidirectional Long Short Memory for Epileptic Seizure Detection (DCAE-ESD-Bi-LSTM) for automatic detection of seizures using EEG data. The significant feature of our model is that it has contributed to the accurate and optimized diagnosis of epilepsy in ideal and real-life situations. The results on the benchmark (CHB-MIT) dataset and the dataset collected by the authors show the relevance of the proposed approach over the baseline deep learning techniques by achieving an accuracy of 99.8%, classification accuracy of 99.7%, sensitivity of 99.8%, specificity and precision of 99.9% and F1 score of 99.6%. Our approach can contribute to the accurate and optimized detection of seizures while scaling the design rules and increasing performance without changing the network's depth.
Collapse
|
5
|
A survey of evolutionary algorithms for supervised ensemble learning. KNOWL ENG REV 2023. [DOI: 10.1017/s0269888923000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Abstract
This paper presents a comprehensive review of evolutionary algorithms that learn an ensemble of predictive models for supervised machine learning (classification and regression). We propose a detailed four-level taxonomy of studies in this area. The first level of the taxonomy categorizes studies based on which stage of the ensemble learning process is addressed by the evolutionary algorithm: the generation of base models, model selection, or the integration of outputs. The next three levels of the taxonomy further categorize studies based on methods used to address each stage. In addition, we categorize studies according to the main types of objectives optimized by the evolutionary algorithm, the type of base learner used and the type of evolutionary algorithm used. We also discuss controversial topics, like the pros and cons of the selection stage of ensemble learning, and the need for using a diversity measure for the ensemble’s members in the fitness function. Finally, as conclusions, we summarize our findings about patterns in the frequency of use of different methods and suggest several new research directions for evolutionary ensemble learning.
Collapse
|
6
|
Yedurkar DP, Metkar SP, Al-Turjman F, Stephan T, Kolhar M, Altrjman C. A Novel Approach for Multichannel Epileptic Seizure Classification Based on Internet of Things Framework Using Critical Spectral Verge Feature Derived from Flower Pollination Algorithm. SENSORS (BASEL, SWITZERLAND) 2022; 22:9302. [PMID: 36502005 PMCID: PMC9737714 DOI: 10.3390/s22239302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
A novel approach for multichannel epilepsy seizure classification which will help to automatically locate seizure activity present in the focal brain region was proposed. This paper suggested an Internet of Things (IoT) framework based on a smart phone by utilizing a novel feature termed multiresolution critical spectral verge (MCSV), based on frequency-derived information for epileptic seizure classification which was optimized using a flower pollination algorithm (FPA). A wireless sensor technology (WSN) was utilized to record the electroencephalography (EEG) signal of epileptic patients. Next, the EEG signal was pre-processed utilizing a multiresolution-based adaptive filtering (MRAF) method. Then, the maximal frequency point at which the power spectral density (PSD) of each EEG segment was greater than the average spectral power of the corresponding frequency band was computed. This point was further optimized to extract a point termed as critical spectral verge (CSV) to extract the exact high frequency oscillations representing the actual seizure activity present in the EEG signal. Next, a support vector machine (SVM) classifier was used for channel-wise classification of the seizure and non-seizure regions using CSV as a feature. This process of classification using the CSV feature extracted from the MRAF output is referred to as the MCSV approach. As a final step, cloud-based services were employed to analyze the EEG information from the subject's smart phone. An exhaustive analysis was undertaken to assess the performance of the MCSV approach for two datasets. The presented approach showed an improved performance with a 93.83% average sensitivity, a 97.94% average specificity, a 97.38% average accuracy with the SVM classifier, and a 95.89% average detection rate as compared with other state-of-the-art studies such as deep learning. The methods presented in the literature were unable to precisely localize the origination of the seizure activity in the brain region and reported a low seizure detection rate. This work introduced an optimized CSV feature which was effectively used for multichannel seizure classification and localization of seizure origination. The proposed MCSV approach will help diagnose epileptic behavior from multichannel EEG signals which will be extremely useful for neuro-experts to analyze seizure details from different regions of the brain.
Collapse
Affiliation(s)
| | - Shilpa P. Metkar
- Department of Electronics and Telecommunication Engineering, College of Engineering Pune, Pune 411005, India
| | - Fadi Al-Turjman
- Artificial Intelligence Engineering Department, AI and Robotics Institute, Near East University, Mersin 10, Turkey
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey
| | - Thompson Stephan
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, M. S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Manjur Kolhar
- Department of Computer Science, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Chadi Altrjman
- Research Center for AI and IoT, Faculty of Engineering, University of Kyrenia, Mersin 10, Turkey
- Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
7
|
Ahmed MIB, Alotaibi S, Atta-ur-Rahman, Dash S, Nabil M, AlTurki AO. A Review on Machine Learning Approaches in Identification of Pediatric Epilepsy. SN COMPUTER SCIENCE 2022; 3:437. [PMID: 35965953 PMCID: PMC9364307 DOI: 10.1007/s42979-022-01358-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/26/2022] [Indexed: 10/26/2022]
Abstract
Epilepsy is the second most common neurological disease after Alzheimer. It is a disorder of the brain which results in recurrent seizures. Though the epilepsy in general is considered as a serious disorder, its effects in children are rather dangerous. It is mainly because it reasons a slower rate of development and a failure to improve certain skills among such children. Seizures are the most common symptom of epilepsy. As a regular medical procedure, the specialists record brain activity using an electroencephalogram (EEG) to observe epileptic seizures. The detection of these seizures is performed by specialists, but the results might not be accurate and depend on the specialist's experience; therefore, automated detection of epileptic pediatric seizures might be an optimal solution. In this regard, several techniques have been investigated in the literature. This research aims to review the approaches to pediatric epilepsy seizures' identification especially those based on machine learning, in addition to the techniques applied on the CHB-MIT scalp EEG database of epileptic pediatric signals.
Collapse
Affiliation(s)
- Mohammed Imran Basheer Ahmed
- Department of Computer Engineering, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shamsah Alotaibi
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Atta-ur-Rahman
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Sujata Dash
- Department of Computer Application, Maharaja Srirama Chandra Bhanj Deo University, Baripada, India
| | - Majed Nabil
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Abdullah Omar AlTurki
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| |
Collapse
|
8
|
Ambati R, Raja S, Al-Hameed M, John T, Arjoune Y, Shekhar R. Neuromorphic Architecture Accelerated Automated Seizure Detection in Multi-Channel Scalp EEG. SENSORS 2022; 22:s22051852. [PMID: 35271005 PMCID: PMC8914704 DOI: 10.3390/s22051852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
Epileptic focal seizures can be localized in the brain using tracer injections during or immediately after the incidence of a seizure. A real-time automated seizure detection system with minimal latency can help time the injection properly to find the seizure origin accurately. Reliable real-time seizure detection systems have not been clinically reported yet. We developed an anomaly detection-based automated seizure detection system, using scalp-electroencephalogram (EEG) data, which can be trained using a few seizure sessions, and implemented it on commercially available hardware with parallel, neuromorphic architecture—the NeuroStack. We extracted nonlinear, statistical, and discrete wavelet decomposition features, and we developed a graphical user interface and traditional feature selection methods to select the most discriminative features. We investigated Reduced Coulomb Energy (RCE) networks and K-Nearest Neighbors (k-NN) for its several advantages, such as fast learning no local minima problem. We obtained a maximum sensitivity of 91.14%±1.77% and a specificity of 98.77%±0.57% with 5 s epoch duration. The system’s latency was 12 s, which is within most seizure event windows, which last for an average duration of 60 s. Our results showed that the CD feature consumes large computation resources and excluding it can reduce the latency to 3.6 s but at the cost of lower performance 80% sensitivity and 97% specificity. We demonstrated that the proposed methodology achieves a high specificity and an acceptable sensitivity within a short delay. Our results indicated also that individual-based RCE are superior to population-based RCE. The proposed RCE networks has been compared to SVM and ANN as a baseline for comparison as they are the most common machine learning seizure detection methods. SVM and ANN-based systems were trained on the same data as RCE and K-NN with features optimized specifically for them. RCE nets are superior to SVM and ANN. The proposed model also achieves comparable performance to the state-of-the-art deep learning techniques while not requiring a sizeable database, which is often expensive to build. These numbers indicate that the system is viable as a trigger mechanism for tracer injection.
Collapse
Affiliation(s)
- Ravi Ambati
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Shanker Raja
- National Neuroscience Institute, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (S.R.); (M.A.-H.)
| | - Majed Al-Hameed
- National Neuroscience Institute, King Fahad Medical City, Riyadh 12231, Saudi Arabia; (S.R.); (M.A.-H.)
| | - Titus John
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Youness Arjoune
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
| | - Raj Shekhar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA; (R.A.); (T.J.); (Y.A.)
- Correspondence:
| |
Collapse
|
9
|
Zhang Y, Yao S, Yang R, Liu X, Qiu W, Han L, Zhou W, Shang W. Epileptic Seizure Detection Based on Bidirectional Gated Recurrent Unit Network. IEEE Trans Neural Syst Rehabil Eng 2022; 30:135-145. [PMID: 35030083 DOI: 10.1109/tnsre.2022.3143540] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Visual inspection of long-term electroencephalography (EEG) is a tedious task for physicians in neurology. Based on bidirectional gated recurrent unit (Bi-GRU) neural network, an automatic seizure detection method is proposed in this paper to facilitate the diagnosis and treatment of epilepsy. Firstly, wavelet transforms are applied to EEG recordings for filtering pre-processing. Then the relative energies of signals in several particular frequency bands are calculated and inputted into Bi-GRU network. Afterwards, the outputs of Bi-GRU network are further processed by moving average filtering, threshold comparison and seizure merging to generate the discriminant results that the tested EEG belong to seizure or not. Evaluated on CHB-MIT scalp EEG database, the proposed seizure detection method obtained an average sensitivity of 93.89% and an average specificity of 98.49%. 124 out of 128 seizures were correctly detected and the achieved average false detection rate was 0.31 per hour on 867.14 h testing data. The results show the superiority of Bi-GRU network in seizure detection and the proposed detection method has a promising potential in the monitoring of long-term EEG.
Collapse
|
10
|
Kaleem M, Guergachi A, Krishnan S. Comparison of Empirical Mode Decomposition, Wavelets, and Different Machine Learning Approaches for Patient-Specific Seizure Detection Using Signal-Derived Empirical Dictionary Approach. Front Digit Health 2021; 3:738996. [PMID: 34966902 PMCID: PMC8710482 DOI: 10.3389/fdgth.2021.738996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Analysis of long-term multichannel EEG signals for automatic seizure detection is an active area of research that has seen application of methods from different domains of signal processing and machine learning. The majority of approaches developed in this context consist of extraction of hand-crafted features that are used to train a classifier for eventual seizure detection. Approaches that are data-driven, do not use hand-crafted features, and use small amounts of patients' historical EEG data for classifier training are few in number. The approach presented in this paper falls in the latter category, and is based on a signal-derived empirical dictionary approach, which utilizes empirical mode decomposition (EMD) and discrete wavelet transform (DWT) based dictionaries learned using a framework inspired by traditional methods of dictionary learning. Three features associated with traditional dictionary learning approaches, namely projection coefficients, coefficient vector and reconstruction error, are extracted from both EMD and DWT based dictionaries for automated seizure detection. This is the first time these features have been applied for automatic seizure detection using an empirical dictionary approach. Small amounts of patients' historical multi-channel EEG data are used for classifier training, and multiple classifiers are used for seizure detection using newer data. In addition, the seizure detection results are validated using 5-fold cross-validation to rule out any bias in the results. The CHB-MIT benchmark database containing long-term EEG recordings of pediatric patients is used for validation of the approach, and seizure detection performance comparable to the state-of-the-art is obtained. Seizure detection is performed using five classifiers, thereby allowing a comparison of the dictionary approaches, features extracted, and classifiers used. The best seizure detection performance is obtained using EMD based dictionary and reconstruction error feature and support vector machine classifier, with accuracy, sensitivity and specificity values of 88.2, 90.3, and 88.1%, respectively. Comparison is also made with other recent studies using the same database. The methodology presented in this paper is shown to be computationally efficient and robust for patient-specific automatic seizure detection. A data-driven methodology utilizing a small amount of patients' historical data is hence demonstrated as a practical solution for automatic seizure detection.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Electrical Engineering, University of Management and Technology, Lahore, Pakistan
| | - Aziz Guergachi
- Department of Information Technology Management, Ted Rogers School of Management, Ryerson University, Toronto, ON, Canada
| | - Sridhar Krishnan
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
11
|
Moharamzadeh N, Motie Nasrabadi A. A fuzzy sensitivity analysis approach to estimate brain effective connectivity and its application to epileptic seizure detection. BIOMED ENG-BIOMED TE 2021; 67:19-32. [PMID: 34953180 DOI: 10.1515/bmt-2021-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
The brain is considered to be the most complicated organ in human body. Inferring and quantification of effective (causal) connectivity among regions of the brain is an important step in characterization of its complicated functions. The proposed method is comprised of modeling multivariate time series with Adaptive Neurofuzzy Inference System (ANFIS) and carrying out a sensitivity analysis using Fuzzy network parameters as a new approach to introduce a connectivity measure for detecting causal interactions between interactive input time series. The results of simulations indicate that this method is successful in detecting causal connectivity. After validating the performance of the proposed method on synthetic linear and nonlinear interconnected time series, it is applied to epileptic intracranial Electroencephalography (EEG) signals. The result of applying the proposed method on Freiburg epileptic intracranial EEG data recorded during seizure shows that the proposed method is capable of discriminating between the seizure and non-seizure states of the brain.
Collapse
Affiliation(s)
- Nader Moharamzadeh
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| | - Ali Motie Nasrabadi
- Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran
| |
Collapse
|
12
|
Prasanna J, Subathra MSP, Mohammed MA, Damaševičius R, Sairamya NJ, George ST. Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey. J Pers Med 2021; 11:1028. [PMID: 34683169 PMCID: PMC8537151 DOI: 10.3390/jpm11101028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.
Collapse
Affiliation(s)
- J. Prasanna
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - M. S. P. Subathra
- Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;
| | - Mazin Abed Mohammed
- Information Systems Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31000, Anbar, Iraq;
| | - Robertas Damaševičius
- Department of Applied Informatics, Vytautas Magnus University, 44404 Kaunas, Lithuania
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Nanjappan Jothiraj Sairamya
- Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India; (J.P.); (N.J.S.)
| | - S. Thomas George
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| |
Collapse
|
13
|
Chen X, Zheng Y, Dong C, Song S. Multi-Dimensional Enhanced Seizure Prediction Framework Based on Graph Convolutional Network. Front Neuroinform 2021; 15:605729. [PMID: 34489667 PMCID: PMC8417243 DOI: 10.3389/fninf.2021.605729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
In terms of seizure prediction, how to fully mine relational data information among multiple channels of epileptic EEG? This is a scientific research subject worthy of further exploration. Recently, we propose a multi-dimensional enhanced seizure prediction framework, which mainly includes information reconstruction space, graph state encoder, and space-time predictor. It takes multi-channel spatial relationship as breakthrough point. At the same time, it reconstructs data unit from frequency band level, updates graph coding representation, and explores space-time relationship. Through experiments on CHB-MIT dataset, sensitivity of the model reaches 98.61%, which proves effectiveness of the proposed model.
Collapse
Affiliation(s)
- Xin Chen
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,School of Computer Science and Engineering at Southeast University, Nanjing, China
| | - Yuanjie Zheng
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Shandong Normal University, Jinan, China.,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China.,Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Changxu Dong
- School of Information Science and Engineering at Shandong Normal University, Jinan, China
| | - Sutao Song
- School of Information Science and Engineering at Shandong Normal University, Jinan, China.,Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Shandong Normal University, Jinan, China.,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China.,Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
14
|
Automatic detection of epileptic seizure events using the time-frequency features and machine learning. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Shariat A, Zarei A, Karvigh SA, Asl BM. Automatic detection of epileptic seizures using Riemannian geometry from scalp EEG recordings. Med Biol Eng Comput 2021; 59:1431-1445. [PMID: 34128177 DOI: 10.1007/s11517-021-02385-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/15/2021] [Indexed: 11/30/2022]
Abstract
This paper proposes a new framework for epileptic seizure detection using non-invasive scalp electroencephalogram (sEEG) signals. The major innovation of the current study is using the Riemannian geometry for transforming the covariance matrices estimated from the EEG channels into a feature vector. The spatial covariance matrices are considered as features in order to extract the spatial information of the sEEG signals without applying any spatial filtering. Since these matrices are symmetric and positive definite (SPD), they belong to a special manifold called the Riemannian manifold. Furthermore, a kernel based on Riemannian geometry is proposed. This kernel maps the SPD matrices onto the Riemannian tangent space. The SPD matrices, obtained from all channels of the segmented sEEG signals, have high dimensions and extra information. For these reasons, the sequential forward feature selection method is applied to select the best features and reduce the computational burden in the classification step. The selected features are fed into a support vector machine (SVM) with an RBF kernel to classify the feature vectors into seizure and non-seizure classes. The performance of the proposed method is evaluated using two long-term scalp EEG (CHB-MIT benchmark and private) databases. Experimental results on all 23 subjects of the CHB-MIT database reveal an accuracy of 99.87%, a sensitivity of 99.91%, and a specificity of 99.82%. In addition, the introduced algorithm is tested on the private sEEG signals recorded from 20 patients, having 1380 seizures. The proposed approach achieves an accuracy, a sensitivity, and a specificity of 98.14%, 98.16%, and 98.12%, respectively. The experimental results on both sEEG databases demonstrate the effectiveness of the proposed method for automated epileptic seizure detection, especially for the private database which has noisier signals in comparison to the CHB-MIT database. Graphical Abstract Block diagram of the proposed epileptic seizure detection algorithm.
Collapse
Affiliation(s)
- Atefeh Shariat
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Asghar Zarei
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Ahmadi Karvigh
- Department of Neurology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
16
|
Peng H, Lei C, Zheng S, Zhao C, Wu C, Sun J, Hu B. Automatic epileptic seizure detection via Stein kernel-based sparse representation. Comput Biol Med 2021; 132:104338. [PMID: 33780870 DOI: 10.1016/j.compbiomed.2021.104338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
Epileptic seizure detection is of great significance in the diagnosis of epilepsy and relieving the heavy workload of visual inspection of electroencephalogram (EEG) recordings. This paper presents a novel method for seizure detection using the Stein kernel-based sparse representation (SR) for EEG recordings. Different from the traditional SR scheme that works with vector data in Euclidean space, the Stein kernel-based SR framework is constructed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Due to the non-Euclidean geometry of the Riemannian manifold, the Stein kernel on the manifold permits the embedding of the manifold in a high-dimensional reproducing kernel Hilbert space (RKHS) to perform SR. In the Stein kernel-based SR framework, EEG samples are described by SPD matrices in the form of covariance descriptors (CovDs). Then, a test EEG sample is sparsely represented on the training set, and the test sample is classified as a member of the class, which leads to the minimum reconstructed residual. Finally, by using three widely used EEG datasets to evaluate the detection performance of the proposed method, the experimental results demonstrate that it achieves good classification accuracy on each dataset. Furthermore, the fast computational speed of the Stein kernel-based SR also meets the basic requirements for real-time seizure detection.
Collapse
Affiliation(s)
- Hong Peng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Chang Lei
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Shuzhen Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Chengjian Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Chunyun Wu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Jieqiong Sun
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China.
| |
Collapse
|
17
|
Peng H, Li C, Chao J, Wang T, Zhao C, Huo X, Hu B. A novel automatic classification detection for epileptic seizure based on dictionary learning and sparse representation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Yao X, Li X, Ye Q, Huang Y, Cheng Q, Zhang GQ. A robust deep learning approach for automatic classification of seizures against non-seizures. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Li M, Sun X, Chen W. Patient-specific seizure detection method using nonlinear mode decomposition for long-term EEG signals. Med Biol Eng Comput 2020; 58:3075-3088. [DOI: 10.1007/s11517-020-02279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
|
20
|
Tang FG, Liu Y, Li Y, Peng ZW. A unified multi-level spectral–temporal feature learning framework for patient-specific seizure onset detection in EEG signals. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
A framework for seizure detection using effective connectivity, graph theory, and multi-level modular network. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101878] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Li Y, Liu Y, Cui WG, Guo YZ, Huang H, Hu ZY. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Trans Neural Syst Rehabil Eng 2020; 28:782-794. [PMID: 32078551 DOI: 10.1109/tnsre.2020.2973434] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The intelligent recognition of epileptic electro-encephalogram (EEG) signals is a valuable tool for the epileptic seizure detection. Recent deep learning models fail to fully consider both spectral and temporal domain representations simultaneously, which may lead to omitting the nonstationary or nonlinear property in epileptic EEGs and further produce a suboptimal recognition performance consequently. In this paper, an end-to-end EEG seizure detection framework is proposed by using a novel channel-embedding spectral-temporal squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy-based information maximizing loss. Specifically, the CE-stSENet firstly integrates both multi-level spectral and multi-scale temporal analysis simultaneously. Hierarchical multi-domain representations are then captured in a unified manner with a variant of squeeze-and-excitation block. The classification net is finally implemented for epileptic EEG recognition based on features extracted in previous subnetworks. Particularly, to address the fact that the scarcity of seizure events results in finite data distribution and the severe overfitting problem in seizure detection, the CE-stSENet is coordinated with a maximum mean discrepancy-based information maximizing loss for mitigating the overfitting problem. Competitive experimental results on three EEG datasets against the state-of-the-art methods demonstrate the effectiveness of the proposed framework in recognizing epileptic EEGs, indicating its powerful capability in the automatic seizure detection.
Collapse
|
23
|
Dash DP, Kolekar MH, Jha K. Multi-channel EEG based automatic epileptic seizure detection using iterative filtering decomposition and Hidden Markov Model. Comput Biol Med 2019; 116:103571. [PMID: 32001007 DOI: 10.1016/j.compbiomed.2019.103571] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 11/28/2022]
Abstract
Electroencephalography (EEG) is a non-invasive method for the analysis of neurological disorders. Epilepsy is one of the most widespread neurological disorders and often characterized by repeated seizures. This paper intends to conduct an iterative filtering based decomposition of EEG signals to improve upon the accuracy of seizure detection. The proposed approach is evaluated using All India Institute of Medical Science (AIIMS) Patna EEG database and online CHB-MIT surface EEG database. The iterative filtering decomposition technique is applied to extract sub-components from the EEG signal. The feature set obtained from each segmented intrinsic mode function consists of 2-D power spectral density and time-domain features dynamic mode decomposition power, variance, and Katz fractal dimension. The Hidden Markov Model (HMM) based probabilistic model has been designed using the above-stated features representing the seizure and non-seizure EEG events. The EEG signal is classified based on the maximum score obtained from the individual feature-based classifiers. The maximum score derived from each HMM classifier gives the final class information. The proposed decomposition of EEG signals achieved 99.60% and 99.74% accuracy in seizure detection for the online CHB-MIT surface EEG database and AIIMS Patna EEG database, respectively.
Collapse
Affiliation(s)
- Deba Prasad Dash
- Department of Electrical Engineering, Indian Institute of Technology, Patna, India.
| | | | - Kamlesh Jha
- Department of Physiology, All India Institute of Medical Sciences, Patna, India.
| |
Collapse
|
24
|
Tian X, Deng Z, Ying W, Choi KS, Wu D, Qin B, Wang J, Shen H, Wang S. Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1962-1972. [PMID: 31514144 DOI: 10.1109/tnsre.2019.2940485] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Epilepsy is a neurological illness caused by abnormal discharge of brain neurons, where epileptic seizure can lead to life-threatening emergencies. By analyzing the encephalogram (EEG) signals of patients with epilepsy, their conditions can be monitored and seizure can be detected and intervened in time. As the identification of effective features in EEG signals is important for accurate seizure detection, this paper proposes a multi-view deep feature extraction method in attempt to achieve this goal. The method first uses fast Fourier transform (FFT) and wavelet packet decomposition (WPD) to construct the initial multi-view features. Convolutional neural network (CNN) is then used to automatically learn deep features from the initial multi-view features, which reduces the dimensionality and obtain the features with better seizure identification ability. Furthermore, the multi-view Takagi-Sugeno-Kang fuzzy system (MV-TSK-FS), an interpretable rule-based classifier, is used to construct a classification model with strong generalizability based on the deep multi-view features obtained. Experimental studies show that the classification accuracy of the proposed multi-view deep feature extraction method is at least 1% higher than that of common feature extraction methods such as principal component analysis (PCA), FFT and WPD. The classification accuracy is also at least 4% higher than the average accuracy achieved with single-view deep features.
Collapse
|
25
|
Zabihi M, Kiranyaz S, Jantti V, Lipping T, Gabbouj M. Patient-Specific Seizure Detection Using Nonlinear Dynamics and Nullclines. IEEE J Biomed Health Inform 2019; 24:543-555. [PMID: 30932854 DOI: 10.1109/jbhi.2019.2906400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nonlinear dynamics has recently been extensively used to study epilepsy due to the complex nature of the neuronal systems. This study presents a novel method that characterizes the dynamic behavior of pediatric seizure events and introduces a systematic approach to locate the nullclines on the phase space when the governing differential equations are unknown. Nullclines represent the locus of points in the solution space where the components of the velocity vectors are zero. A simulation study over 5 benchmark nonlinear systems with well-known differential equations in three-dimensional exhibits the characterization efficiency and accuracy of the proposed approach that is solely based on the reconstructed solution trajectory. Due to their unique characteristics in the nonlinear dynamics of epilepsy, discriminative features can be extracted based on the nullclines concept. Using a limited training data (only 25% of each EEG record) in order to mimic the real-world clinical practice, the proposed approach achieves 91.15% average sensitivity and 95.16% average specificity over the benchmark CHB-MIT dataset. Together with an elegant computational efficiency, the proposed approach can, therefore, be an automatic and reliable solution for patient-specific seizure detection in long EEG recordings.
Collapse
|
26
|
Wang X, Gong G, Li N. Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer. SENSORS 2019; 19:s19020219. [PMID: 30634406 PMCID: PMC6359608 DOI: 10.3390/s19020219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 01/03/2019] [Indexed: 01/03/2023]
Abstract
Automatic recognition methods for non-stationary electroencephalogram (EEG) data collected from EEG sensors play an essential role in neurological detection. The integrated approaches proposed in this study consist of Symlet wavelet processing, a gradient boosting machine, and a grid search optimizer for a three-class classification scheme for normal subjects, intermittent epilepsy, and continuous epilepsy. Fourth-order Symlet wavelets are adopted to decompose the EEG data into five frequencies sub-bands, such as gamma, beta, alpha, theta, and delta, whose statistical features were computed and used as classification features. The grid search optimizer is used to automatically find the optimal parameters for training the classifier. The classification accuracy of the gradient boosting machine was compared with that of a conventional support vector machine and a random forest classifier constructed according to previous descriptions. Multiple performance indices were used to evaluate the proposed classification scheme, which provided better classification accuracy and detection effectiveness than has been recently reported in other studies on three-class classification of EEG data.
Collapse
Affiliation(s)
- Xiashuang Wang
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
- Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
| | - Guanghong Gong
- Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
| | - Ni Li
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China.
- Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
27
|
Kaleem M, Guergachi A, Krishnan S. Patient-specific seizure detection in long-term EEG using wavelet decomposition. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Kaleem M, Gurve D, Guergachi A, Krishnan S. Patient-specific seizure detection in long-term EEG using signal-derived empirical mode decomposition (EMD)-based dictionary approach. J Neural Eng 2018; 15:056004. [PMID: 29937449 DOI: 10.1088/1741-2552/aaceb1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The objective of the work described in this paper is the development of a computationally efficient methodology for patient-specific automatic seizure detection in long-term multi-channel EEG recordings. APPROACH A novel patient-specific seizure detection approach based on a signal-derived empirical mode decomposition (EMD)-based dictionary approach is proposed. For this purpose, we use an empirical framework for EMD-based dictionary creation and learning, inspired by traditional dictionary learning methods, in which the EMD-based dictionary is learned from the multi-channel EEG data being analyzed for automatic seizure detection. We present the algorithm for dictionary creation and learning, whose purpose is to learn dictionaries with a small number of atoms. Using training signals belonging to seizure and non-seizure classes, an initial dictionary, termed as the raw dictionary, is formed. The atoms of the raw dictionary are composed of intrinsic mode functions obtained after decomposition of the training signals using the empirical mode decomposition algorithm. The raw dictionary is then trained using a learning algorithm, resulting in a substantial decrease in the number of atoms in the trained dictionary. The trained dictionary is then used for automatic seizure detection, such that coefficients of orthogonal projections of test signals against the trained dictionary form the features used for classification of test signals into seizure and non-seizure classes. Thus no hand-engineered features have to be extracted from the data as in traditional seizure detection approaches. MAIN RESULTS The performance of the proposed approach is validated using the CHB-MIT benchmark database, and averaged accuracy, sensitivity and specificity values of 92.9%, 94.3% and 91.5%, respectively, are obtained using support vector machine classifier and five-fold cross-validation method. These results are compared with other approaches using the same database, and the suitability of the approach for seizure detection in long-term multi-channel EEG recordings is discussed. SIGNIFICANCE The proposed approach describes a computationally efficient method for automatic seizure detection in long-term multi-channel EEG recordings. The method does not rely on hand-engineered features, as are required in traditional approaches. Furthermore, the approach is suitable for scenarios where the dictionary once formed and trained can be used for automatic seizure detection of newly recorded data, making the approach suitable for long-term multi-channel EEG recordings.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Electrical Engineering, University of Management and Technology, Lahore, Pakistan
| | | | | | | |
Collapse
|
29
|
Deng Z, Xu P, Xie L, Choi KS, Wang S. Transductive Joint-Knowledge-Transfer TSK FS for Recognition of Epileptic EEG Signals. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1481-1494. [PMID: 29994680 DOI: 10.1109/tnsre.2018.2850308] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Intelligent recognition of electroencephalogram (EEG) signals is an important means to detect seizure. Traditional methods for recognizing epileptic EEG signals are usually based on two assumptions: 1) adequate training examples are available for model training and 2) the training set and the test set are sampled from data sets with the same distribution. Since seizures occur sporadically, training examples of seizures could be limited. Besides, the training and test sets are usually not sampled from the same distribution for generic non-patient-specific recognition of EEG signals. Hence, the two assumptions in traditional recognition methods could hardly be satisfied in practice, which results in degradation of model performance. Transfer learning is a feasible approach to tackle this issue attributed to its ability to effectively learn the knowledge from the related scenes (source domains) for model training in the current scene (target domain). Among the existing transfer learning methods for epileptic EEG recognition, transductive transfer learning fuzzy systems (TTL-FSs) exhibit distinctive advantages-the interpretability that is important for medical diagnosis and the transfer learning ability that is absent from traditional fuzzy systems. Nevertheless, the transfer learning ability of TTL-FSs is restricted to a certain extent since only the discrepancy in marginal distribution between the training data and test data is considered. In this paper, the enhanced transductive transfer learning Takagi-Sugeno-Kang fuzzy system construction method is proposed to overcome the challenge by introducing two novel transfer learning mechanisms: 1) joint knowledge is adopted to reduce the discrepancy between the two domains and 2) an iterative transfer learning procedure is introduced to enhance transfer learning ability. Extensive experiments have been carried out to evaluate the effectiveness of the proposed method in recognizing epileptic EEG signals on the Bonn and CHB-MIT EEG data sets. The results show that the method is superior to or at least competitive with some of the existing state-of-art methods under the scenario of transfer learning.
Collapse
|
30
|
Wang D, Ren D, Li K, Feng Y, Ma D, Yan X, Wang G. Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function. IEEE Trans Biomed Eng 2018; 65:2591-2599. [PMID: 29993489 DOI: 10.1109/tbme.2018.2809798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
GOAL The accurate automatic detection of epileptic seizures is very important in long-term electroencephalogram (EEG) recordings. In this study, the wavelet decomposition and the directed transfer function (DTF) algorithm were combined to present a novel wavelet-based directed transfer function (WDTF) method for the patient-specific seizure detection. METHODS First, five subbands were extracted from 19-channel EEG signals by using wavelet decomposition in a sliding window. Second, the information flow characteristics of five subbands and full frequency band of EEG signals were calculated by the DTF method. The intensity of the outflow information was then used to reduce the feature dimensionality. Finally, all features were combined to identify interictal and ictal EEG segments by the support vector machine classifier. RESULTS By using fivefold cross validation, the proposed method had achieved excellent performance with the average accuracy of 99.4%, the average selectivity of 91.1%, the average sensitivity of 92.1%, the average specificity of 99.5%, and the average detection rate of 95.8%. CONCLUSION The WDTF method is able to enhance seizure detection results in long-term EEG recordings of focal epilepsy patients. SIGNIFICANCE This study may lead to the development of seizure detection system with high performance, thus reducing the workload of epileptologists and facilitating to take corresponding steps promptly after the seizure onset. The high-frequency activity in the epilepsy brain may be of great importance for investigating the pathological mechanism and treatment of seizure.
Collapse
|
31
|
Random ensemble learning for EEG classification. Artif Intell Med 2018; 84:146-158. [DOI: 10.1016/j.artmed.2017.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/21/2023]
|
32
|
Janjarasjitt S. Performance of epileptic single-channel scalp EEG classifications using single wavelet-based features. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:57-67. [DOI: 10.1007/s13246-016-0520-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022]
|
33
|
Janjarasjitt S. Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med Biol Eng Comput 2017; 55:1743-1761. [PMID: 28194648 DOI: 10.1007/s11517-017-1613-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
In this study, wavelet-based features of single-channel scalp EEGs recorded from subjects with intractable seizure are examined for epileptic seizure classification. The wavelet-based features extracted from scalp EEGs are simply based on detail and approximation coefficients obtained from the discrete wavelet transform. Support vector machine (SVM), one of the most commonly used classifiers, is applied to classify vectors of wavelet-based features of scalp EEGs into either seizure or non-seizure class. In patient-based epileptic seizure classification, a training data set used to train SVM classifiers is composed of wavelet-based features of scalp EEGs corresponding to the first epileptic seizure event. Overall, the excellent performance on patient-dependent epileptic seizure classification is obtained with the average accuracy, sensitivity, and specificity of, respectively, 0.9687, 0.7299, and 0.9813. The vector composed of two wavelet-based features of scalp EEGs provide the best performance on patient-dependent epileptic seizure classification in most cases, i.e., 19 cases out of 24. The wavelet-based features corresponding to the 32-64, 8-16, and 4-8 Hz subbands of scalp EEGs are the mostly used features providing the best performance on patient-dependent classification. Furthermore, the performance on both patient-dependent and patient-independent epileptic seizure classifications are also validated using tenfold cross-validation. From the patient-independent epileptic seizure classification validated using tenfold cross-validation, it is shown that the best classification performance is achieved using the wavelet-based features corresponding to the 64-128 and 4-8 Hz subbands of scalp EEGs.
Collapse
Affiliation(s)
- Suparerk Janjarasjitt
- Department of Electrical and Electronic Engineering, Ubon Ratchathani University, 85 Sathonlamak Road, Warin Chamrap, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
34
|
Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2016.11.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Bhattacharyya A, Pachori RB. A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Trans Biomed Eng 2017; 64:2003-2015. [PMID: 28092514 DOI: 10.1109/tbme.2017.2650259] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This paper investigates the multivariate oscillatory nature of electroencephalogram (EEG) signals in adaptive frequency scales for epileptic seizure detection. METHODS The empirical wavelet transform (EWT) has been explored for the multivariate signals in order to determine the joint instantaneous amplitudes and frequencies in signal adaptive frequency scales. The proposed multivariate extension of EWT has been studied on multivariate multicomponent synthetic signal, as well as on multivariate EEG signals of Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp EEG database. In a moving-window-based analysis, 2-s-duration multivariate EEG signal epochs containing five automatically selected channels have been decomposed and three features have been extracted from each 1-s part of the 2-s-duration joint instantaneous amplitudes of multivariate EEG signals. The extracted features from each oscillatory level have been processed using a proposed feature processing step and joint features have been computed in order to achieve better discrimination of seizure and seizure-free EEG signal epochs. RESULTS The proposed detection method has been evaluated over 177 h of EEG records using six classifiers. We have achieved average sensitivity, specificity, and accuracy values as 97.91%, 99.57%, and 99.41%, respectively, using tenfold cross-validation method, which are higher than the compared state of art methods studied on this database. CONCLUSION Efficient detection of epileptic seizure is achieved when seizure events appear for long duration in hours long EEG recordings. SIGNIFICANCE The proposed method develops time-frequency plane for multivariate signals and builds patient-specific models for EEG seizure detection.
Collapse
|
36
|
Zabihi M, Kiranyaz S, Rad AB, Katsaggelos AK, Gabbouj M, Ince T. Analysis of High-Dimensional Phase Space via Poincaré Section for Patient-Specific Seizure Detection. IEEE Trans Neural Syst Rehabil Eng 2016; 24:386-98. [DOI: 10.1109/tnsre.2015.2505238] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Duque-Muñoz L, Espinosa-Oviedo JJ, Castellanos-Dominguez CG. Identification and monitoring of brain activity based on stochastic relevance analysis of short-time EEG rhythms. Biomed Eng Online 2014; 13:123. [PMID: 25168571 PMCID: PMC4459461 DOI: 10.1186/1475-925x-13-123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background The extraction of physiological rhythms from electroencephalography (EEG) data and their automated analyses are extensively studied in clinical monitoring, to find traces of interictal/ictal states of epilepsy. Methods Because brain wave rhythms in normal and interictal/ictal events, differently influence neuronal activity, our proposed methodology measures the contribution of each rhythm. These contributions are measured in terms of their stochastic variability and are extracted from a Short Time Fourier Transform to highlight the non–stationary behavior of the EEG data. Then, we performed a variability–based relevance analysis by handling the multivariate short–time rhythm representation within a subspace framework. This maximizes the usability of the input information and preserves only the data that contribute to the brain activity classification. For neural activity monitoring, we also developed a new relevance rhythm diagram that qualitatively evaluates the rhythm variability throughout long time periods in order to distinguish events with different neuronal activities. Results Evaluations were carried out over two EEG datasets, one of which was recorded in a noise–filled environment. The method was evaluated for three different classification problems, each of which addressed a different interpretation of a medical problem. We perform a blinded study of 40 patients using the support–vector machine classifier cross–validation scheme. The obtained results show that the developed relevance analysis was capable of accurately differentiating normal, ictal and interictal activities. Conclusions The proposed approach provides the reliable identification of traces of interictal/ictal states of epilepsy. The introduced relevance rhythm diagrams of physiological rhythms provides effective means of monitoring epileptic seizures; additionally, these diagrams are easily implemented and provide simple clinical interpretation. The developed variability–based relevance analysis can be translated to other monitoring applications involving time–variant biomedical data.
Collapse
Affiliation(s)
- Leonardo Duque-Muñoz
- Grupo de Automática y Electrónica, Instituto Tecnológico Metropolitano, Medellin, Colombia.
| | | | | |
Collapse
|
38
|
Holmes JH. Methods and applications of evolutionary computation in biomedicine. J Biomed Inform 2014; 49:11-5. [PMID: 24874181 DOI: 10.1016/j.jbi.2014.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/20/2022]
Affiliation(s)
- John H Holmes
- Associate Professor of Medical Informatics in Epidemiology, Department of Biostatistics and Epidemiology, University of Pennsylvania, Perelman School of Medicine, United States.
| |
Collapse
|