1
|
Kwokdinata C, Chai K, Lau K, Tan J, Chew SY. Bioprinted Microchannel Scaffolds Modulate Neuronal Differentiation of Encapsulated Human Spinal Cord Progenitor Cells. ACS APPLIED BIO MATERIALS 2025. [PMID: 40312827 DOI: 10.1021/acsabm.5c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A potential approach for treating spinal cord injuries is the implantation of human induced pluripotent stem cells-derived spinal cord progenitor cells (SCPCs) encapsulated in hydrogels. Digital light processing (DLP) enables the fabrication of scaffolds with high microchannel packing density, which are essential for neurofilament infiltration. In this study, SCPCs were encapsulated in gelatin methacrylate (GelMA)-based bioinks for single-layer printing via DLP bioprinting to incorporate human SCPCs within microchannel scaffolds at a reduced printing time. Mechanical properties were evaluated through degradation studies and compression testing, revealing that while the presence of poly(ethylene glycol) diacrylate improved printability and scaffold stability, it adversely affected cell survival. Scaffolds with higher GelMA concentration (10%) induced greater extent of motor neuronal differentiation as compared to those with 7.5% GelMA concentration (9.4 ± 5.1% vs 3.70 ± 2.6%, p < 0.001). In contrast, the scaffolds with lower GelMA concentration increased interneuron differentiation compared to those with higher GelMA concentration (7.3 ± 1.7% vs 1.6 ± 1.8%, p < 0.01), indicating that stiffness and GelMA content may modulate SCPC differentiation to specific neural subtypes. Overall, the encapsulation of SCPCs within the GelMA microchannel scaffold highlights the significance of material composition and stiffness in 3D printability and neuronal differentiation for spinal cord injury treatment.
Collapse
Affiliation(s)
- Christy Kwokdinata
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Kyra Chai
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Kieran Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jerome Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HealthTech @ NTU, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Neumann O, Surana HV, Melly S, Steinmann P, Budday S. Mechanical characteristics of spinal cord tissue by indentation. J Mech Behav Biomed Mater 2025; 163:106863. [PMID: 39731849 DOI: 10.1016/j.jmbbm.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/13/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading. Our results show that spinal cord white matter tissue is more compliant than grey matter tissue with apparent moduli of 128.7 and 403.8 Pa, respectively. They show similar viscoelastic behavior with stress relaxation time constants of τ1=1.38s and τ2=36.29s for grey matter and τ1=1.46s and τ2=46.10s for white matter, while the initial peak force decreased by 54 % for grey and 59 % for white matter tissue. An increase of the applied loading rate by two orders of magnitude led to an approximate doubling of the apparent modulus for both tissue types. Thermal variations showed a decrease in apparent modulus of up to 30 % after heating from 20 to 37.0 °C. Our dynamic tests revealed a significant influence of cyclic preload on the stiffness, with a drop of up to 20 % and a relative decrease of up to 60 % after the first cycle compared to the total modulus drop after five cycles for spinal cord grey matter tissue. Oscillatory indentation experiments identified similar loss moduli for spinal cord grey and white matter tissue and a higher storage modulus for white matter tissue. This work provides systematic insights into the mechanical properties of spinal cord tissue under different loading scenarios using nanoindentation.
Collapse
Affiliation(s)
- Oskar Neumann
- Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany
| | - Harsh Vardhan Surana
- Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany
| | - Stephen Melly
- Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 5, Erlangen, 91058, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 5, Erlangen, 91058, Germany
| | - Silvia Budday
- Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany.
| |
Collapse
|
3
|
Jin C, Yu JM, Li R, Ye XJ. Regional biomechanical characterization of the spinal cord tissue: dynamic mechanical response. Front Bioeng Biotechnol 2024; 12:1439323. [PMID: 39219623 PMCID: PMC11361947 DOI: 10.3389/fbioe.2024.1439323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Characterizing the dynamic mechanical properties of spinal cord tissue is deemed important for developing a comprehensive knowledge of the mechanisms underlying spinal cord injury. However, complex viscoelastic properties are vastly underexplored due to the spinal cord shows heterogeneous properties. To investigate regional differences in the biomechanical properties of spinal cord, we provide a mechanical characterization method (i.e., dynamic mechanical analysis) that facilitates robust measurement of spinal cord ex vivo, at small deformations, in the dynamic regimes. Load-unload cycles were applied to the tissue surface at sinusoidal frequencies of 0.05, 0.10, 0.50 and 1.00 Hz ex vivo within 2 h post mortem. We report the main response features (e.g., nonlinearities, rate dependencies, hysteresis and conditioning) of spinal cord tissue dependent on anatomical origin, and quantify the viscoelastic properties through the measurement of peak force, moduli, and hysteresis and energy loss. For all three anatomical areas (cervical, thoracic, and lumbar spinal cord tissues), the compound, storage, and loss moduli responded similarly to increasing strain rates. Notably, the complex modulus values of ex vivo spinal cord tissue rose nonlinearly with rising test frequency. Additionally, at every strain rate, it was shown that the tissue in the thoracic spinal cord was significantly more rigid than the tissue in the cervical or lumbar spinal cord, with compound modulus values roughly 1.5-times that of the lumbar region. At strain rates between 0.05 and 0.50 Hz, tan δ values for thoracic (that is, 0.26, 0.25, 0.06, respectively) and lumbar (that is, 0.27, 0.25, 0.07, respectively) spinal cord regions were similar, respectively, which were higher than cervical (that is, 0.21, 0.21, 0.04, respectively) region. The conditioning effects tend to be greater at relative higher deformation rates. Interestingly, no marked difference of conditioning ratios is observed among all three anatomical regions, regardless of loading rate. These findings lay a foundation for further comparison between healthy and diseased spinal cord to the future development of spinal cord scaffold and helps to advance our knowledge of neuroscience.
Collapse
Affiliation(s)
- Chen Jin
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang-ming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-jian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhao H, Xiong T, Chu Y, Hao W, Zhao T, Sun X, Zhuang Y, Chen B, Zhao Y, Wang J, Chen Y, Dai J. Biomimetic Dual-Network Collagen Fibers with Porous and Mechanical Cues Reconstruct Neural Stem Cell Niche via AKT/YAP Mechanotransduction after Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311456. [PMID: 38497893 DOI: 10.1002/smll.202311456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Tissue engineering scaffolds can mediate the maneuverability of neural stem cell (NSC) niche to influence NSC behavior, such as cell self-renewal, proliferation, and differentiation direction, showing the promising application in spinal cord injury (SCI) repair. Here, dual-network porous collagen fibers (PCFS) are developed as neurogenesis scaffolds by employing biomimetic plasma ammonia oxidase catalysis and conventional amidation cross-linking. Following optimizing the mechanical parameters of PCFS, the well-matched Young's modulus and physiological dynamic adaptability of PCFS (4.0 wt%) have been identified as a neurogenetic exciter after SCI. Remarkably, porous topographies and curving wall-like protrusions are generated on the surface of PCFS by simple and non-toxic CO2 bubble-water replacement. As expected, PCFS with porous and matched mechanical properties can considerably activate the cadherin receptor of NSCs and induce a series of serine-threonine kinase/yes-associated protein mechanotransduction signal pathways, encouraging cellular orientation, neuron differentiation, and adhesion. In SCI rats, implanted PCFS with matched mechanical properties further integrated into the injured spinal cords, inhibited the inflammatory progression and decreased glial and fibrous scar formation. Wall-like protrusions of PCFS drive multiple neuron subtypes formation and even functional neural circuits, suggesting a viable therapeutic strategy for nerve regeneration and functional recovery after SCI.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tiandi Xiong
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yun Chu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Wangping Hao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tongtong Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyue Sun
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
5
|
Stanners M, O'Riordan M, Theodosiou E, Souppez JBRG, Gardner A. The mechanical properties of the spinal cord: a systematic review. Spine J 2024; 24:1302-1312. [PMID: 38432298 DOI: 10.1016/j.spinee.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND CONTENT Spinal cord compression is a source of pathology routinely seen in clinical practice. However, there remain unanswered questions surrounding both the understanding of pathogenesis and the best method of treatment. This arises from limited real-life testing of the mechanical properties of the spinal cord, either through cadaveric human specimens or animal testing, both of which suffer from methodological, as well as ethical, issues. PURPOSE To conduct a review of the literature on the mechanical properties of the spinal cord. STUDY DESIGN/SETTING A systematic review of the literature on the mechanical properties of the spinal cord is undertaken. PATIENT SAMPLE All literature reporting the testing of the mechanical properties of the spinal cord. OUTCOME MEASURES Reported physiological mechanical properties of the spinal cord. METHODS The methodological quality of the studies has been assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE's risk of bias tool. This paper details the methodologies and results of the reported testing. RESULTS We show that (1) the research quality of previous work does not follow published guidelines on animal treatment or risk of bias, (2) no standard protocol has been employed for sample preparation or mechanical testing, (3) this leads to a wide distribution of results for the tested mechanical properties, not applicable to the living human or animal, and (4) animal testing is not a good proxy for human application. CONCLUSIONS The findings summarize the sum of current knowledge inherent to the mechanical properties of the spinal cord and may contribute to the development of a physical model which is applicable to the living human for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from spinal cord compression.
Collapse
Affiliation(s)
- Megan Stanners
- Aston Medical School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | | | - Eirini Theodosiou
- Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jean-Baptiste R G Souppez
- Department of Mechanical, Biomedical and Design Engineering, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Adrian Gardner
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK.
| |
Collapse
|
6
|
Xu ML, Yang YT, Zeng HZ, Cao YT, Zheng LD, Jin C, Zhu SJ, Zhu R. Finite element modeling and analysis of effect of preexisting cervical degenerative disease on the spinal cord during flexion and extension. Med Biol Eng Comput 2024; 62:1089-1104. [PMID: 38148413 DOI: 10.1007/s11517-023-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.
Collapse
Affiliation(s)
- Meng-Lei Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui-Zi Zeng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chen Jin
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
7
|
Stanners M, O'Riordan M, Hartley L, Theodosiou E, Souppez JB, Gardner A. The mechanical properties of the spinal cord: a protocol for a systematic review of previous testing procedures and results. Syst Rev 2024; 13:56. [PMID: 38326889 PMCID: PMC10848440 DOI: 10.1186/s13643-023-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Spinal cord compression is a pathology seen in routine clinical practice. However, there remain a number of unanswered questions around both the understanding of the pathogenesis and the best method of treatment of the condition. This is partly due to the issues of the real-life testing of the physical properties of the spinal cord, either through the use of cadaveric human specimens or through animal testing, both of which have methodological, as well as ethical, issues. DESIGN AND METHODS This paper details a protocol for a systematic review of the literature on the mechanical properties of the spinal cord. We will conduct a literature search of a number of electronic databases, along with the grey literature, as a single-stage search. All literature will be screened for appropriate studies which will then be reviewed fully to extract relevant information on the methodology and mechanics of the reported testing along with the results. Two reviewers will separately screen and extract the data, with a comparison of results to ensure concordance. Conflicts will be resolved through discussion and independent arbitration as required. The methodological quality of the studies will be assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE risk of bias tool. A narrative synthesis will be created with the appropriate tables to describe the demographics and findings of the included studies. DISCUSSION The systematic review described here will form the basis of an understanding of the current literature around the physical properties of the spinal cord. This will allow future work to develop a physical model of the spinal cord, which is translatable to patients for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from this condition. TRIAL REGISTRATION Prospero registration number: CRD42022361933.
Collapse
Affiliation(s)
| | | | - Laura Hartley
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | | | | | - Adrian Gardner
- Aston University, Aston Street, Birmingham, B4 7ET, UK.
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK.
| |
Collapse
|
8
|
Frantsuzov R, Mondal S, Walsh CM, Reynolds JP, Dooley D, MacManus DB. A finite element model of contusion spinal cord injury in rodents. J Mech Behav Biomed Mater 2023; 142:105856. [PMID: 37087955 DOI: 10.1016/j.jmbbm.2023.105856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Traumatic spinal cord injuries result from high impact forces acting on the spine and are proceeded by an extensive secondary inflammatory response resulting in motor, sensory, and autonomic dysfunction. Experimental in vivo traumatic spinal cord injuries in rodents using a contusion model have been extremely useful in elucidating the underlying pathophysiology of these injuries. However, the relationship between the pathophysiology and the biomechanical factors is still not well understood. Therefore, the aim of this research is to provide a comprehensive analysis of the biomechanics of traumatic spinal cord injury in a rat contusion model. This is achieved through the development and validation of a finite element model of the thoracic rat spinal cord and subsequently simulating controlled cortical impact-induced traumatic spinal cord injury. The effects of impactor velocity, depth, and geometry on the resulting stresses and strains within the spinal cord are investigated. Our results show that increasing impactor depth results in larger stresses and strains within the spinal cord tissue as expected. Further, for the first time ever our results show that impactor geometry (spherical versus cylindrical) plays an important role in the distribution and magnitude of stresses and strains within the cord. Therefore, finite element modelling can be a powerful tool used to predict stresses and strains that occur in spinal cord tissue during trauma.
Collapse
Affiliation(s)
- Roman Frantsuzov
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Subrata Mondal
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Ciara M Walsh
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - James P Reynolds
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Dearbhaile Dooley
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - David B MacManus
- School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin, Ireland; MEDeng Research Centre, Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Jiang F, Sakuramoto I, Nishida N, Onomoto Y, Ohgi J, Chen X. The mechanical behavior of bovine spinal cord white matter under various strain rate conditions: tensile testing and visco-hyperelastic constitutive modeling. Med Biol Eng Comput 2023; 61:1381-1394. [PMID: 36708501 DOI: 10.1007/s11517-023-02787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
The mechanical behavior of the white matter is important for estimating the damage of the spinal cord during accidents. In this study, we conducted uniaxial tension testing in vitro of bovine spinal cord white matter under extremely high strain rate conditions (up to 100 s-1). A visco-hyperelastic constitutive law for modeling the strain rate-dependent behavior of the bovine spinal cord white matter was developed. A set of material constants was obtained using a Levenberg-Marquardt fitting algorithm to match the uniaxial tension experimental data with various strain rates. Our experimental data confirmed that the modulus and tensile strength increased when the strain rate is higher. For the extremely high strain rate condition (100 s-1), we found that both the modulus and failure stress significantly increased compared with the low strain rate case. These new data in terms of mechanical response at high strain rate provide insight into the spine injury mechanism caused by high-speed impact. Moreover, the developed constitutive model will allow researchers to perform more realistic finite element modeling and simulation of spinal cord injury damage under various complicated conditions.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Itsuo Sakuramoto
- Department of Mechanical and Electrical Engineering, National Institute of Technology, Tokuyama College, Gakuendai, Shunan, Yamaguchi, 745-8585, Japan
| | - Norihiro Nishida
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, MinamiKogushi, Yamaguchi, 755-8505, Ube City, Japan
| | - Yoshikatsu Onomoto
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Junji Ohgi
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| | - Xian Chen
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
| |
Collapse
|
10
|
Dynamic changes in mechanical properties of the adult rat spinal cord after injury. Acta Biomater 2023; 155:436-448. [PMID: 36435440 DOI: 10.1016/j.actbio.2022.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI), a debilitating medical condition that can cause irreversible loss of neurons and permanent paralysis, currently has no cure. However, regenerative medicine may offer a promising treatment. Given that numerous regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding and characterising the mechanical properties of the spinal cord tissue is very important. In this study, we have systematically characterised the spatiotemporal changes in elastic stiffness (elastic modulus, Pa) and viscosity (drop in peak force, %) of injured rat thoracic spinal cord tissues at distinct time points after crush injury using the indentation technique. Our results demonstrate that in comparison with uninjured spinal cord tissue, the injured tissues exhibited lower stiffness (median 3281 Pa versus 9632 Pa; P < 0.001) but demonstrated elevated viscosity (median 80% versus 57%; P < 0.001) at 3 days postinjury. Between 4 and 6 weeks after SCI, the overall viscoelastic properties of injured tissues returned to baseline values. At 12 weeks after SCI, in comparison with uninjured tissue, the injured spinal cord tissues displayed a significant increase in both elasticity (median 13698 Pa versus 9920 Pa; P < 0.001) and viscosity (median 64% versus 58%; P < 0.001). This work constitutes the first quantitative mapping of spatiotemporal changes in spinal cord tissue elasticity and viscosity in injured rats, providing a mechanical basis of the tissue for future studies on the development of biomaterials for SCI repair. STATEMENT OF SIGNIFICANCE: Spinal cord injury (SCI) is a devastating disease often leading to permanent paralysis. While enormous progress in understanding the molecular pathomechanisms of SCI has been made, the mechanical properties of injured spinal cord tissue have received considerably less attention. This study provides systematic characterization of the biomechanical evolution of rat spinal cord tissue after SCI using a microindentation test method. We find spinal cord tissue behaves significantly softer but more viscous immediately postinjury. As time passes, the lesion site gradually returns to baseline values and then displays pronounced increased viscoelastic properties. As host tissue mechanical properties are a crucial consideration for any biomaterial implanted into central nervous system, our results may have important implications for further studies of SCI repair.
Collapse
|
11
|
Dhandapani V, Ringuette V, Desrochers M, Sirois M, Vermette P. Composition, host responses and clinical applications of bioadhesives. J Biomed Mater Res B Appl Biomater 2022; 110:2779-2797. [PMID: 35748414 DOI: 10.1002/jbm.b.35113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
Bioadhesives are medical devices used to join or seal tissues that have been injured or incised. They have been classified into tissue adhesives, sealants, and hemostatic agents. Bioadhesives such as FloSeal®, CoSeal®, BioGlue®, Evicel®, Tisseel®, Progel™ PALS, and TissuGlu® have been commercialized and used in clinical setting. They can be formulated with natural or synthetic components or a combination of both including albumin, glutaraldehyde, chitosan, cyanoacrylate, fibrin and thrombin, gelatin, polyethylene glycol (PEG), along with urethanes. Each formulation has intrinsic properties and has been developed and validated for a specific application. This review article briefs the mechanisms by which bioadhesives forms adhesion to tissues and highlights the correlation between bioadhesives composition and their potential host responses. Furthermore, clinical applications of bioadhesives and their application-driven requirements are outlined.
Collapse
Affiliation(s)
- Vignesh Dhandapani
- Department of Chemical and Biotechnological Engineering, Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| | - Vickie Ringuette
- Department of Surgery, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Monika Desrochers
- Department of Chemical and Biotechnological Engineering, Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marco Sirois
- Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Sherbrooke, Québec, Canada.,Department of Surgery, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick Vermette
- Department of Chemical and Biotechnological Engineering, Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Faculté de médecine et des sciences de la santé, Centre de Recherche du CHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Mungenast L, Züger F, Selvi J, Faia-Torres AB, Rühe J, Suter-Dick L, Gullo MR. Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. Int J Mol Sci 2022; 23:ijms231911525. [PMID: 36232822 PMCID: PMC9569964 DOI: 10.3390/ijms231911525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| | - Fabian Züger
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jasmin Selvi
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg–IMTEK, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Maurizio R. Gullo
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| |
Collapse
|
13
|
Jin C, Zhu R, Xu ML, Zheng LD, Zeng HZ, Xie N, Cheng LM. Effect of Velocity and Contact Stress Area on the Dynamic Behavior of the Spinal Cord Under Different Testing Conditions. Front Bioeng Biotechnol 2022; 10:762555. [PMID: 35309983 PMCID: PMC8931460 DOI: 10.3389/fbioe.2022.762555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Knowledge of the dynamic behavior of the spinal cord under different testing conditions is critical for our understanding of biomechanical mechanisms of spinal cord injury. Although velocity and contact stress area are known to affect external mechanical stress or energy upon sudden traumatic injury, quantitative investigation of the two clinically relevant biomechanical variables is limited. Here, freshly excised rat spinal-cord–pia-arachnoid constructs were tested through indentation using indenters of different sizes (radii: 0.25, 0.50, and 1.00 mm) at various loading rates ranging from 0.04 to 0.20 mm/s. This analysis found that the ex vivo specimen displayed significant nonlinear viscoelasticity at <10% of specimen thickness depth magnitudes. At higher velocity and larger contact stress area, the cord withstood a higher peak load and exhibited more sensitive mechanical relaxation responses (i.e., increasing amplitude and speed of the drop in peak load). Additionally, the cord became stiffer (i.e., increasing elastic modulus) and softer (i.e., decreasing elastic modulus) at a higher velocity and larger contact stress area, respectively. These findings will improve our understanding of the real-time complex biomechanics involved in traumatic spinal cord injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Xie
- *Correspondence: Ning Xie, ; Li-ming Cheng,
| | | |
Collapse
|
14
|
Jannesar S, Salegio EA, Beattie MS, Bresnahan JC, Sparrey CJ. Correlating Tissue Mechanics and Spinal Cord Injury: Patient-Specific Finite Element Models of Unilateral Cervical Contusion Spinal Cord Injury in Non-Human Primates. J Neurotrauma 2021; 38:698-717. [PMID: 33066716 PMCID: PMC8418518 DOI: 10.1089/neu.2019.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-human primate (NHP) models are the closest approximation of human spinal cord injury (SCI) available for pre-clinical trials. The NHP models, however, include broader morphological variability that can confound experimental outcomes. We developed subject-specific finite element (FE) models to quantify the relationship between impact mechanics and SCI, including the correlations between FE outcomes and tissue damage. Subject-specific models of cervical unilateral contusion SCI were generated from pre-injury MRIs of six NHPs. Stress and strain outcomes were compared with lesion histology using logit analysis. A parallel generic model was constructed to compare the outcomes of subject-specific and generic models. The FE outcomes were correlated more strongly with gray matter damage (0.29 < R2 < 0.76) than white matter (0.18 < R2 < 0.58). Maximum/minimum principal strain, Von-Mises and Tresca stresses showed the strongest correlations (0.31 < R2 < 0.76) with tissue damage in the gray matter while minimum principal strain, Von-Mises stress, and Tresca stress best predicted white matter damage (0.23 < R2 < 0.58). Tissue damage thresholds varied for each subject. The generic FE model captured the impact biomechanics in two of the four models; however, the correlations between FE outcomes and tissue damage were weaker than the subject-specific models (gray matter [0.25 < R2 < 0.69] and white matter [R2 < 0.06] except for one subject [0.26 < R2 < 0.48]). The FE mechanical outputs correlated with tissue damage in spinal cord white and gray matters, and the subject-specific models accurately mimicked the biomechanics of NHP cervical contusion impacts.
Collapse
Affiliation(s)
- Shervin Jannesar
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Ernesto A. Salegio
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Michael S. Beattie
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Bartlett RD, Eleftheriadou D, Evans R, Choi D, Phillips JB. Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine. Biomaterials 2020; 258:120303. [DOI: 10.1016/j.biomaterials.2020.120303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
|
16
|
Yu J, Manouchehri N, Yamamoto S, Kwon BK, Oxland TR. Mechanical properties of spinal cord grey matter and white matter in confined compression. J Mech Behav Biomed Mater 2020; 112:104044. [PMID: 32947099 DOI: 10.1016/j.jmbbm.2020.104044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022]
Abstract
To better understand the link between spinal cord impact and the resulting tissue damage, computational models are often used. These models typically simulate the spinal cord as a homogeneous and isotropic material. Recent research suggests that grey and white matter tissue differences and directional differences, i.e. anisotropy, are important to predict spinal cord damage. The objective of this research was to characterize the mechanical properties of spinal cord grey and white matter tissue in confined compression. Spinal cords (n = 12) were harvested immediately following euthanasia from Yorkshire and Yucatan pigs. The spinal cords were flash frozen (60 s at -80 °C) and prepared into four types of test samples: grey matter axial, grey matter transverse, white matter axial, and white matter transverse. Each sample type was thawed, and subsequently tested in confined compression within 6 h of euthanasia. Samples were compressed to 10% strain at a quasi-static strain rate (0.001/sec) and allowed to relax for 120 s. A quasi-linear viscoelastic model combining a first-order exponential with a 1-term Prony series characterized the loading and relaxation responses respectively. The effect of tissue type (grey matter vs. white matter), direction (axial vs. transverse), and their interaction were evaluated with a two-way ANOVA (p < 0.05) with peak stress, aggregate modulus, and relaxation time as dependent variables. This study found grey matter to be 1.6-2 times stiffer than white matter and both grey and white matter were isotropic in compression. These findings should be emphasized when studying SCI biomechanics using computational models.
Collapse
Affiliation(s)
- Justin Yu
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Shun Yamamoto
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas R Oxland
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Firouzian KF, Song Y, Lin F, Zhang T. Fabrication of a biomimetic spinal cord tissue construct with heterogenous mechanical properties using intrascaffold cell assembly. Biotechnol Bioeng 2020; 117:3094-3107. [PMID: 32542651 DOI: 10.1002/bit.27459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/27/2022]
Abstract
In tissue engineering studies, scaffolds play a very important role in offering both physical and chemical cues for cell growth and tissue regeneration. However, in some cases, tissue regeneration requires scaffolds with high mechanical properties (e.g., bone and cartilage), while cells need a soft mechanical microenvironment. In this study, to mimic the heterogenous mechanical properties of a spinal cord tissue, a biomimetic rat tissue construct is fabricated. A collagen-coated poly(lactic-co-glycolic acid) scaffold is manufactured using thermally induced phase separation casting. Primary rat neural cells (P01 Wistar rat cortex) with soft hydrogels are later printed within the scaffold using an image-guided intrascaffold cell assembly technique. The scaffolds have unidirectional microporous structure with parallel axial macrochannels (260 ± 4 µm in diameter). Scaffolds showed mechanical properties similar to rat spine (ultimate tensile strength: 0.085 MPa, Young's modulus [stretch]: 0.31 MPa). The bioink composed of gelatin/alginate/fibrinogen is precisely printed into the macrochannels and showed mechanical properties suitable for neural cells (Young's modulus [compressive]: 3.814 kPa). Scaffold interface, cell viability, and immunostaining analyses show uniform distribution of stable, healthy, and elongated neural cells and neurites over 14 culture days in vitro. The results demonstrated that this method can serve as a valuable tool to aid manufacturing of tissue constructs requiring heterogenous mechanical properties for complex cell and/or biomolecule assembly.
Collapse
Affiliation(s)
- Kevin F Firouzian
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, China
| | - Yu Song
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, China
| | - Feng Lin
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, China
| | - Ting Zhang
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, China
| |
Collapse
|
18
|
Mattucci S, Speidel J, Liu J, Kwon BK, Tetzlaff W, Oxland TR. Basic biomechanics of spinal cord injury - How injuries happen in people and how animal models have informed our understanding. Clin Biomech (Bristol, Avon) 2019; 64:58-68. [PMID: 29685426 DOI: 10.1016/j.clinbiomech.2018.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/05/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
The wide variability, or heterogeneity, in human spinal cord injury is due partially to biomechanical factors. This review summarizes our current knowledge surrounding the patterns of human spinal column injury and the biomechanical factors affecting injury. The biomechanics of human spinal injury is studied most frequently with human cadaveric models and the features of the two most common injury patterns, burst fracture and fracture dislocation, are outlined. The biology of spinal cord injury is typically studied with animal models and the effects of the most relevant biomechanical factors - injury mechanism, injury velocity, and residual compression, are described. Tissue damage patterns and behavioural outcomes following dislocation or distraction injury mechanisms differ from the more commonly used contusion mechanism. The velocity of injury affects spinal cord damage, principally in the white matter. Ongoing, or residual compression after the initial impact does affect spinal cord damage, but few models exist that replicate the clinical scenario. Future research should focus on the effects of these biomechanical factors in different preclinical animal models as recent data suggests that treatment outcomes may vary between models.
Collapse
Affiliation(s)
- Stephen Mattucci
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Jason Speidel
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Orthopaedics, University of British Columbia, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Departments of Zoology and Surgery, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Thomas R Oxland
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Orthopaedics, University of British Columbia, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
19
|
Wilems T, Vardhan S, Wu S, Sakiyama-Elbert S. The influence of microenvironment and extracellular matrix molecules in driving neural stem cell fate within biomaterials. Brain Res Bull 2019; 148:25-33. [PMID: 30898579 DOI: 10.1016/j.brainresbull.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Transplantation of stem cells is a promising potential therapy for central nervous system disease and injury. The capacity for self-renewal, proliferation of progenitor cells, and multi-lineage potential underscores the need for controlling stem cell fate. Furthermore, transplantation within a hostile environment can lead to significant cell death and limited therapeutic potential. Tissue-engineered materials have been developed to both regulate stem cell fate, increase transplanted cell viability, and improve therapeutic outcomes. Traditionally, regulation of stem cell differentiation has been driven through soluble signals, such as growth factors. While these signals are important, insoluble factors from the local microenvironment or extracellular matrix (ECM) molecules also contribute to stem cell activity and fate. Understanding the microenvironment factors that influence stem cell fate, such as mechanical properties, topography, and presentation of specific ECM ligands, is necessary for designing improved biomaterials. Here we review some of the microenvironment factors that regulate stem cell fate and how they can be incorporated into biomaterials as part of potential CNS therapies.
Collapse
Affiliation(s)
- Thomas Wilems
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sangamithra Vardhan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Siliang Wu
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Shelly Sakiyama-Elbert
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
20
|
Ramo NL, Troyer K, Puttlitz C. Comparing Predictive Accuracy and Computational Costs for Viscoelastic Modeling of Spinal Cord Tissues. J Biomech Eng 2019; 141:2727822. [PMID: 30835287 DOI: 10.1115/1.4043033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/08/2022]
Abstract
The constitutive equation used to characterize and model spinal tissues can significantly influence the conclusions from experimental and computational studies. Therefore, researchers must make critical judgements regarding the balance of computational efficiency and predictive accuracy necessary for their purposes. The objective of this study is to quantitatively compare the fitting and prediction accuracy of linear viscoelastic (LV), quasi-linear viscoelastic (QLV), and (fully) non-linear viscoelastic (NLV) modeling of spinal-cord-pia-arachnoid-construct (SCPC), isolated cord parenchyma, and isolated pia-arachnoid-complex (PAC) mechanics in order to better inform these judgements. Experimental data collected during dynamic cyclic testing of each tissue condition were used to fit each viscoelastic formulation. These fitted models were then used to predict independent experimental data from stress-relaxation testing. Relative fitting accuracy was found not to directly reflect relative predictive accuracy, emphasizing the need for material model validation through predictions of independent data. For the SCPC and isolated cord, the NLV formulation best predicted the mechanical response to arbitrary loading conditions, but required significantly greater computational run time. The mechanical response of the PAC under arbitrary loading conditions was best predicted by the QLV formulation.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Kevin Troyer
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| | - Christian Puttlitz
- School of Biomedical Engineering, Colorado State University, Department of Mechanical Engineering, Colorado State University, Department of Clinical Sciences, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| |
Collapse
|
21
|
Lucas E, Whyte T, Liu J, Russell C, Tetzlaff W, Cripton PA. High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an In Vivo Rat Model. J Neurotrauma 2018; 35:2572-2580. [PMID: 29786472 DOI: 10.1089/neu.2017.5478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although spinal cord deformation is thought to be a predictor of injury severity, few researchers have investigated dynamic cord deformation, in vivo, during impact. This is needed to establish correlations among impact parameters, internal cord deformation, and histological and functional outcomes. Relying on surface deformations alone may not sufficiently represent spinal cord deformation. The objective of this study was to develop a high-speed fluoroscopic method of tracking the surface and internal cord deformations of rat spinal cord during experimental cord injury. Two radio-opaque beads were injected into the cord at C5/6 in the dorsal and ventral white matter. Four additional beads were glued to the surface of the cord. Dynamic bead displacement was tracked during a dorsal impact (130 mm/sec, 1 mm depth) by high-speed radiographic imaging at 3000 FPS, laterally. The internal spinal cord beads displaced significantly more than the surface beads in the ventral direction (1.1-1.9 times) and more than most surface beads in the cranial direction (1.2-1.5 times). The dorsal beads (internal and surface) displaced more than the ventral beads during all impacts. The bead displacement pattern implies that the spinal cord undergoes complex internal and surface deformations during impact. Residual displacement of the internal beads was significantly greater than that of the surface beads in the cranial-caudal direction but not the dorsoventral direction. Finite element simulation confirmed that the additional bead mass likely had little effect on the internal cord deformations. These results support the merit of this technique for measuring in vivo spinal cord deformation.
Collapse
Affiliation(s)
- Erin Lucas
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Thomas Whyte
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Jie Liu
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Colin Russell
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Alec Cripton
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Ramo NL, Troyer KL, Puttlitz CM. Viscoelasticity of spinal cord and meningeal tissues. Acta Biomater 2018; 75:253-262. [PMID: 29852238 DOI: 10.1016/j.actbio.2018.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
Compared to the outer dura mater, the mechanical behavior of spinal pia and arachnoid meningeal layers has received very little attention in the literature. This is despite experimental evidence of their importance with respect to the overall spinal cord stiffness and recovery following compression. Accordingly, inclusion of the mechanical contribution of the pia and arachnoid maters would improve the predictive accuracy of finite element models of the spine, especially in the distribution of stresses and strain through the cord's cross-section. However, to-date, only linearly elastic moduli for what has been previously identified as spinal pia mater is available in the literature. This study is the first to quantitatively compare the viscoelastic behavior of isolated spinal pia-arachnoid-complex, neural tissue of the spinal cord parenchyma, and intact construct of the two. The results show that while it only makes up 5.5% of the overall cross-sectional area, the thin membranes of the innermost meninges significantly affect both the elastic and viscous response of the intact construct. Without the contribution of the pia and arachnoid maters, the spinal cord has very little inherent stiffness and experiences significant relaxation when strained. The ability of the fitted non-linear viscoelastic material models of each condition to predict independent data within experimental variability supports their implementation into future finite element computational studies of the spine. STATEMENT OF SIGNIFICANCE The neural tissue of the spinal cord is surrounded by three fibrous layers called meninges which are important in the behavior of the overall spinal-cord-meningeal construct. While the mechanical properties of the outermost layer have been reported, the pia mater and arachnoid mater have received considerably less attention. This study is the first to directly compare the behavior of the isolated neural tissue of the cord, the isolated pia-arachnoid complex, and the construct of these individual components. The results show that, despite being very thin, the inner meninges significantly affect the elastic and time-dependent response of the spinal cord, which may have important implications for studies of spinal cord injury.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kevin L Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
23
|
Saadatkish N, Nouri Khorasani S, Morshed M, Allafchian AR, Beigi MH, Masoudi Rad M, Esmaeely Neisiany R, Nasr-Esfahani MH. A ternary nanofibrous scaffold potential for central nerve system tissue engineering. J Biomed Mater Res A 2018; 106:2394-2401. [PMID: 29637736 DOI: 10.1002/jbm.a.36431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
In the present research, a ternary polycaprolactone (PCL)/gelatin/fibrinogen nanofibrous scaffold for tissue engineering application was developed. Through this combination, PCL improved the scaffold mechanical properties; meanwhile, gelatin and fibrinogen provided more hydrophilicity and cell proliferation. Three types of nanofibrous scaffolds containing different fibrinogen contents were prepared and characterized. Morphological study of the nanofibers showed that the prepared nanofibers were smooth, uniform without any formation of beads with a significant reduction in nanofiber diameter after incorporation of fibrinogen. The chemical characterization of the scaffolds confirmed that no chemical reaction occurred between the scaffold components. The tensile test results of the scaffolds showed that increasing in fibrinogen content led to a decrease in mechanical properties. Furthermore, adipose-derived stem cells were employed to evaluate cell-scaffold interaction. Cell culture results indicated that higher cell proliferation occurred for the higher amount of fibrinogen. Statistical analysis was also carried out to evaluate the significant difference for the obtained results of water droplet contact angle and cell culture. Therefore, the results confirmed that PCL/gel/fibrinogen scaffold has a good potential for tissue engineering applications including central nerve system tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2394-2401, 2018.
Collapse
Affiliation(s)
- Niloufar Saadatkish
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Morshed
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali-Reza Allafchian
- Nanotechnology and Advanced Materials, Institute Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Masoudi Rad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
24
|
Radiography used to measure internal spinal cord deformation in an in vivo rat model. J Biomech 2018; 71:286-290. [PMID: 29477261 DOI: 10.1016/j.jbiomech.2018.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/01/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Little is known about the internal mechanics of the in vivo spinal cord during injury. The objective of this study was to develop a method of tracking internal and surface deformation of in vivo rat spinal cord during compression using radiography. Since neural tissue is radio-translucent, radio-opaque markers were injected into the spinal cord. Two tantalum beads (260 µm) were injected into the cord (dorsal and ventral) at C5 of nine anesthetized rats. Four beads were glued to the lateral surface of the cord, caudal and cranial to the injection site. A compression plate was displaced 0.5 mm, 2 mm, and 3 mm into the spinal cord and lateral X-ray images were taken before, during, and after each compression for measuring bead displacements. Potential bead migration was monitored for by comparing displacements of the internal and glued surface beads. Dorsal beads moved significantly more than ventral beads with a range in averages of 0.57-0.71 mm and 0.31-0.35 mm respectively. Bead displacements during 0.5 mm compressions were significantly lower than 2 mm and 3 mm compressions. There was no statistically significant migration of the internal beads. The results indicate the merit of this technique for measuring in vivo spinal cord deformation. The pattern of bead displacements illustrates the complex internal and surface deformations of the spinal cord during transverse compression. This information is needed for validating physical and finite element spinal cord surrogates and to define relationships between loading parameters, internal cord deformation, and biological and functional outcomes.
Collapse
|
25
|
Ramo NL, Shetye SS, Streijger F, Lee JHT, Troyer KL, Kwon BK, Cripton P, Puttlitz CM. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord. Acta Biomater 2018; 68:78-89. [PMID: 29288084 PMCID: PMC5803400 DOI: 10.1016/j.actbio.2017.12.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/28/2017] [Accepted: 12/18/2017] [Indexed: 11/22/2022]
Abstract
Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. STATEMENT OF SIGNIFICANCE Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living animal (in vivo response). Therefore, this study directly compared the mechanical response of ex vivo and in vivo samples to quantify these differences for the first time. This will allow researchers to draw more accurate conclusions about spinal cord injuries based on ex vivo data (which are easier to obtain) and emphasizes the importance of future in vivo experimental animal work.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Jae H T Lee
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Brian K Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Peter Cripton
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
26
|
Ramo NL, Puttlitz CM, Troyer KL. The development and validation of a numerical integration method for non-linear viscoelastic modeling. PLoS One 2018; 13:e0190137. [PMID: 29293558 PMCID: PMC5749772 DOI: 10.1371/journal.pone.0190137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America.,Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America.,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kevin L Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
27
|
van der Merwe Y, Faust AE, Conner I, Gu X, Feturi F, Zhao W, Leonard B, Roy S, Gorantla VS, Venkataramanan R, Washington KM, Wagner WR, Steketee MB. An Elastomeric Polymer Matrix, PEUU-Tac, Delivers Bioactive Tacrolimus Transdurally to the CNS in Rat. EBioMedicine 2017; 26:47-59. [PMID: 29208469 PMCID: PMC5832622 DOI: 10.1016/j.ebiom.2017.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Central nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity. Thus, delivering tacrolimus locally to CNS tissues may provide therapeutic control over tacrolimus levels in CNS tissues while minimizing off-target toxicity. Herein we show an electrospun poly(ester urethane) urea and tacrolimus elastomeric matrix (PEUU-Tac) can deliver tacrolimus trans-durally to CNS tissues. In an acute CNS ischemia model in rat, the optic nerve (ON) was clamped for 10s and then PEUU-Tac was used as an ON wrap and sutured around the injury site. Tacrolimus was detected in PEUU-Tac wrapped ONs at 24 h and 14 days, without significant increases in tacrolimus blood levels. Similar to systemically administered tacrolimus, PEUU-Tac locally decreased glial fibrillary acidic protein (GFAP) at the injury site and increased growth associated protein-43 (GAP-43) expression in ischemic ONs from the globe to the chiasm, consistent with decreased astrogliosis and increased retinal ganglion cell (RGC) axon growth signaling pathways. These initial results suggest PEUU-Tac is a biocompatible elastic matrix that delivers bioactive tacrolimus trans-durally to CNS tissues without significantly increasing tacrolimus blood levels and off-target toxicity. PEUU-Tac locally delivers tacrolimus to CNS tissues PEUU-Tac positively modulates CNS tissue remodeling PEUU-Tac minimizes off-target tacrolimus toxicity
Central nervous system (CNS) injury typically results in permanently lost neurological function. Tacrolimus is an FDA-approved drug used during organ transplantation that also has CNS neuroprotective and neuroregenerative properties. However, tacrolimus is typically delivered systemically in the blood and delivering effective concentrations to CNS tissues requires tacrolimus blood levels that can lead to adverse side effects in multiple organs. Herein we show that PEUU-Tac, a tacrolimus-eluting matrix, can locally deliver tacrolimus to injured CNS tissues without increasing blood levels, suggesting PEUU-Tac can be used to treat CNS injuries locally while minimizing adverse side effects.
Collapse
Affiliation(s)
- Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anne E Faust
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian Conner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinzhu Gu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Firuz Feturi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bianca Leonard
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Souvik Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, United States
| | - Raman Venkataramanan
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kia M Washington
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States; VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael B Steketee
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
28
|
Ramo N, Shetye SS, Puttlitz CM. Damage Accumulation Modeling and Rate Dependency of Spinal Dura Mater. ACTA ACUST UNITED AC 2017; 1:0110061-110068. [DOI: 10.1115/1.4038261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Indexed: 11/08/2022]
Abstract
As the strongest of the meningeal tissues, the spinal dura mater plays an important role in the overall behavior of the spinal cord-meningeal complex (SCM). It follows that the accumulation of damage affects the dura mater's ability to protect the cord from excessive mechanical loads. Unfortunately, current computational investigations of spinal cord injury (SCI) etiology typically do not include postyield behavior. Therefore, a more detailed description of the material behavior of the spinal dura mater, including characterization of damage accumulation, is required to comprehensively study SCI. Continuum mechanics-based viscoelastic damage theories have been previously applied to other biological tissues; however, the current work is the first to report damage accumulation modeling in a tissue of the SCM complex. Longitudinal (i.e., cranial-to-caudal long-axis) samples of ovine cervical dura mater were tensioned-to-failure at one of three strain rates (quasi-static, 0.05/s, and 0.3/s). The resulting stress–strain data were fit to a hyperelastic continuum damage model to characterize the strain-rate-dependent subfailure and failure behavior. The results show that the damage behavior of the fibrous and matrix components of the dura mater are strain-rate dependent, with distinct behaviors when exposed to strain rates above that experienced during normal voluntary neck motion suggesting the possible existence of a protective mechanism.
Collapse
Affiliation(s)
- Nicole Ramo
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523-1376
| | - Snehal S. Shetye
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374
| | - Christian M. Puttlitz
- School of Biomedical Engineering, Department of Mechanical Engineering, Department of Clinical Sciences, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374
| |
Collapse
|
29
|
MacManus DB, Pierrat B, Murphy JG, Gilchrist MD. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain. Acta Biomater 2017; 57:384-394. [PMID: 28501711 DOI: 10.1016/j.actbio.2017.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ1=0.034±0.008s, τ2=0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ1=0.021±0.007s, τ2=0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. STATEMENT OF SIGNIFICANCE We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue by reducing the overall magnitude of stress by 250% and up to 65% for strains.
Collapse
|
30
|
Bartlett RD, Choi D, Phillips JB. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation. Regen Med 2016; 11:659-73. [DOI: 10.2217/rme-2016-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.
Collapse
Affiliation(s)
- Richard D Bartlett
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - David Choi
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, London, UK
| | - James B Phillips
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
31
|
Fradet L, Cliche F, Petit Y, Mac-Thiong JM, Arnoux PJ. Strain rate dependent behavior of the porcine spinal cord under transverse dynamic compression. Proc Inst Mech Eng H 2016; 230:858-866. [DOI: 10.1177/0954411916655373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The accurate description of the mechanical properties of spinal cord tissue benefits to clinical evaluation of spinal cord injuries and is a required input for analysis tools such as finite element models. Unfortunately, available data in the literature generally relate mechanical properties of the spinal cord under quasi-static loading conditions, which is not adapted to the study of traumatic behavior, as neurological tissue adopts a viscoelastic behavior. Thus, the objective of this study is to describe mechanical properties of the spinal cord up to mechanical damage, under dynamic loading conditions. A total of 192 porcine cervical to lumbar spinal cord samples were compressed in a transverse direction. Loading conditions included ramp tests at 0.5, 5 or 50 s−1 and cyclic loading at 1, 10 or 20 Hz. Results showed that spinal cord behavior was significantly influenced by strain rate. Mechanical damage occurred at 0.64, 0.68 and 0.73 strains for 0.5, 5 or 50 s−1 loadings, respectively. Variations of behavior between the tested strain rates were explained by cyclic loading results, which revealed behavior more or less viscous depending on strain rate. Also, a parameter (stress multiplication factor) was introduced to allow transcription of a stress–strain behavior curve to different strain rates. This factor was described and was significantly different for cervical, thoracic and lumbar vertebral heights, and for the strain rates evaluated in this study.
Collapse
Affiliation(s)
- Léo Fradet
- Département de Génie Mécanique, École Polytechnique de Montréal, Montréal, QC, Canada
- iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
| | - Francis Cliche
- iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
- Département de Génie Mécanique, École de technologie supérieure, Montréal, QC, Canada
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Yvan Petit
- iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
- Département de Génie Mécanique, École de technologie supérieure, Montréal, QC, Canada
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Université de la Méditerranée Aix-Marseille II, Marseille, France
| | - Jean-Marc Mac-Thiong
- iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
- Research Center, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Department of Surgery, Université de Montréal, Montréal, QC, Canada
| | - Pierre-Jean Arnoux
- iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Université de la Méditerranée Aix-Marseille II, Marseille, France
| |
Collapse
|
32
|
Jannesar S, Nadler B, Sparrey CJ. The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load. J Biomech Eng 2016; 138:2536524. [DOI: 10.1115/1.4034171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/31/2023]
Abstract
The rostral-caudally aligned fiber-reinforced structure of spinal cord white matter (WM) gives rise to transverse isotropy in the material. Stress and strain patterns generated in the spinal cord parenchyma following spinal cord injury (SCI) are multidirectional and dependent on the mechanism of the injury. Our objective was to develop a WM constitutive model that captures the material transverse isotropy under dynamic loading. The WM mechanical behavior was extracted from the published tensile and compressive experiments. Combinations of isotropic and fiber-reinforcing models were examined in a conditional quasi-linear viscoelastic (QLV) formulation to capture the WM mechanical behavior. The effect of WM transverse isotropy on SCI model outcomes was evaluated by simulating a nonhuman primate (NHP) contusion injury experiment. A second-order reduced polynomial hyperelastic energy potential conditionally combined with a quadratic reinforcing function in a four-term Prony series QLV model best captured the WM mechanical behavior (0.89 < R2 < 0.99). WM isotropic and transversely isotropic material models combined with discrete modeling of the pia mater resulted in peak impact forces that matched the experimental outcomes. The transversely isotropic WM with discrete pia mater resulted in maximum principal strain (MPS) distributions which effectively captured the combination of ipsilateral peripheral WM sparing, ipsilateral injury and contralateral sparing, and the rostral/caudal spread of damage observed in in vivo injuries. The results suggest that the WM transverse isotropy could have an important role in correlating tissue damage with mechanical measures and explaining the directional sensitivity of the spinal cord to injury.
Collapse
Affiliation(s)
- Shervin Jannesar
- Department of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada e-mail:
| | - Ben Nadler
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada e-mail:
| | - Carolyn J. Sparrey
- Department of Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC V3T 0A3, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada e-mail:
| |
Collapse
|
33
|
The Filum Terminale: A Cadaver Study of Anatomy, Histology, and Elastic Properties. World Neurosurg 2016; 90:565-573.e1. [DOI: 10.1016/j.wneu.2015.12.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022]
|
34
|
Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K. CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys J 2016; 108:2137-47. [PMID: 25954872 PMCID: PMC4423070 DOI: 10.1016/j.bpj.2015.03.039] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 03/10/2015] [Indexed: 11/10/2022] Open
Abstract
Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data.
Collapse
Affiliation(s)
- David E Koser
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Janina Hanne
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Stefanie Kuerten
- Department of Anatomy I, University of Cologne, Cologne, Germany; Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Wong R, Jivraj J, Vuong B, Ramjist J, Dinn NA, Sun C, Huang Y, Smith JA, Yang VX. Development of an integrated optical coherence tomography-gas nozzle system for surgical laser ablation applications: preliminary findings of in situ spinal cord deformation due to gas flow effects. BIOMEDICAL OPTICS EXPRESS 2015; 6:43-53. [PMID: 25657873 PMCID: PMC4317111 DOI: 10.1364/boe.6.000043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Gas assisted laser machining of materials is a common practice in the manufacturing industry. Advantages in using gas assistance include reducing the likelihood of flare-ups in flammable materials and clearing away ablated material in the cutting path. Current surgical procedures and research do not take advantage of this and in the case for resecting osseous tissue, gas assisted ablation can help minimize charring and clear away debris from the surgical site. In the context of neurosurgery, the objective is to cut through osseous tissue without damaging the underlying neural structures. Different inert gas flow rates used in laser machining could cause deformations in compliant materials. Complications may arise during surgical procedures if the dura and spinal cord are damaged by these deformations. We present preliminary spinal deformation findings for various gas flow rates by using optical coherence tomography to measure the depression depth at the site of gas delivery.
Collapse
Affiliation(s)
- Ronnie Wong
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Jamil Jivraj
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Barry Vuong
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Joel Ramjist
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Nicole A. Dinn
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
- Department of Surgical Neuromonitoring, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5,
Canada
| | - Cuiru Sun
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Yize Huang
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - James A. Smith
- Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
| | - Victor X.D. Yang
- Biophotonics and Bioengineering Laboratory, Department of Electrical and Computer Engineering, Ryerson University, Toronto, Ontario, M5B 2K3,
Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, 27 King’s College Circle, Toronto, Ontario, M5S 1A1,
Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5,
Canada
- Physical Sciences Program, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5,
Canada
| |
Collapse
|
36
|
Lam CJ, Assinck P, Liu J, Tetzlaff W, Oxland TR. Impact depth and the interaction with impact speed affect the severity of contusion spinal cord injury in rats. J Neurotrauma 2014; 31:1985-97. [PMID: 24945364 DOI: 10.1089/neu.2014.3392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R(2)=0.86) and lateral (R(2)=0.74) regions of the spinal cord and with WM (R(2)=0.90) and GM (R(2)=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed.
Collapse
Affiliation(s)
- Cameron J Lam
- 1 Orthopedic and Injury Biomechanics Lab, Departments of Mechanical Engineering and Orthopedics, University of British Columbia , Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
37
|
Bhatnagar T, Liu J, Oxland T. Characterization of a Novel, Magnetic Resonance Imaging-Compatible Rodent Model Spinal Cord Injury Device. J Biomech Eng 2014; 136:095001. [DOI: 10.1115/1.4027670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/14/2014] [Indexed: 01/03/2023]
Abstract
Rodent models of acute spinal cord injury (SCI) are often used to investigate the effects of injury mechanism, injury speed, and cord displacement magnitude, on the ensuing cascade of biological damage in the cord. However, due to its small size, experimental observations have largely been limited to the gross response of the cord. To properly understand the relationship between mechanical stimulus and biological damage, more information is needed about how the constituent tissues of the cord (i.e., gray and white matter) respond to injurious stimuli. To address this limitation, we developed a novel magnetic resonance imaging (MRI)-compatible test apparatus that can impose either a contusion-type or dislocation-type acute cervical SCI in a rodent model and facilitate MR-imaging of the cervical spinal cord in a 7 T MR scanner. In this study, we present the experimental performance parameters of the MR rig. Utilizing cadaveric specimens and static radiographs, we report contusion magnitude accuracy that for a desired 1.8 mm injury, a nominal 1.78 mm injury (SD = 0.12 mm) was achieved. High-speed video analysis was employed to determine the injury speeds for both mechanisms and were found to be 1147 mm/s (SD = 240 mm/s) and 184 mm/s (SD = 101 mm/s) for contusion and dislocation injuries, respectively. Furthermore, we present qualitative pilot data from a cadaveric trial, employing the MR rig, to show the expected results from future studies.
Collapse
Affiliation(s)
- Tim Bhatnagar
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada e-mail:
| | - Jie Liu
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Thomas Oxland
- Departments of Orthopaedics and Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
38
|
Shetye SS, Troyer KL, Streijger F, Lee JH, Kwon BK, Cripton PA, Puttlitz CM. Nonlinear viscoelastic characterization of the porcine spinal cord. Acta Biomater 2014; 10:792-7. [PMID: 24211612 DOI: 10.1016/j.actbio.2013.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted root mean squared error for a Heaviside ramp fit was 2.8 kPa, which was significantly greater (p<0.001) than that of the nonlinear (comprehensive viscoelastic characterization method) fit (0.365 kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high-resolution finite elements models of the spine.
Collapse
|
39
|
Pan Y, Sullivan D, Shreiber DI, Pelegri AA. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties. Front Bioeng Biotechnol 2013; 1:19. [PMID: 25152875 PMCID: PMC4126384 DOI: 10.3389/fbioe.2013.00019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/21/2013] [Indexed: 11/13/2022] Open
Abstract
Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE) models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues' microstructure (microscopic level). Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress, and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage.
Collapse
Affiliation(s)
- Yi Pan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| | - Daniel Sullivan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| | - Assimina A Pelegri
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey , Piscataway, NJ , USA
| |
Collapse
|
40
|
Ma Z, Hu S, Tan JS, Myer C, Njus NM, Xia Z. In vitroandin vivomechanical properties of human ulnar and median nerves. J Biomed Mater Res A 2013; 101:2718-25. [DOI: 10.1002/jbm.a.34573] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Juay Seng Tan
- Department of Biomedical Engineering; University of Akron; Akron; Ohio 44325
| | | | - Nina M. Njus
- Summit Hand Center; Summa Health System; Akron; Ohio 44333
| | | |
Collapse
|
41
|
Previtera ML, Hui M, Verma D, Shahin AJ, Schloss R, Langrana NA. The effects of substrate elastic modulus on neural precursor cell behavior. Ann Biomed Eng 2013; 41:1193-207. [PMID: 23429962 DOI: 10.1007/s10439-013-0765-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/13/2013] [Indexed: 01/14/2023]
Abstract
The spinal cord has a limited capacity to self-repair. After injury, endogenous stem cells are activated and migrate, proliferate, and differentiate into glial cells. The absence of neuronal differentiation has been partly attributed to the interaction between the injured microenvironment and neural stem cells. In order to improve post-injury neuronal differentiation and/or maturation potential, cell-cell and cell-biochemical interactions have been investigated. However, little is known about the role of stem cell-matrix interactions on stem cell-mediated repair. Here, we specifically examined the effects of matrix elasticity on stem cell-mediated repair in the spinal cord, since spinal cord injury results in drastic changes in parenchyma elasticity and viscosity. Spinal cord-derived neural precursor cells (NPCs) were grown on bis-acrylamide substrates with various rigidities. NPC growth, proliferation, and differentiation were examined and optimal in the range of normal spinal cord elasticity. In conclusion, limitations in NPC growth, proliferation, and neuronal differentiation were encountered when substrate elasticity was not within normal spinal cord tissue elasticity ranges. These studies elucidate the effect injury mediated mechanical changes may have on tissue repair by stem cells. Furthermore, this information can be applied to the development of future neuroregenerative biomaterials for spinal cord repair.
Collapse
Affiliation(s)
- Michelle L Previtera
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
42
|
An Artificial Neural Network Approach to the Predictive Modeling of Tensile Force during Renal Suturing. Ann Biomed Eng 2012; 41:786-94. [DOI: 10.1007/s10439-012-0722-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
43
|
Gross morphological changes of the spinal cord immediately after surgical decompression in a large animal model of traumatic spinal cord injury. Spine (Phila Pa 1976) 2012; 37:E890-9. [PMID: 22433504 DOI: 10.1097/brs.0b013e3182553d1d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Quantitative in vivo ultrasound imaging study of spinal cord and dura morphology after acute experimental spinal cord injury (SCI) and decompression in a pig model. OBJECTIVE To study the morphological changes of the spinal cord and dura immediately after surgical decompression for acute SCI. SUMMARY OF BACKGROUND DATA Surgical decompression for traumatic SCI is currently a topic of debate. After decompression, relief of bony impingement on the thecal sac and spinal cord can be confirmed intraoperatively. However, postoperative imaging often reveals that the cord has swollen to fill the subarachnoid space. Little is known about the extent and timing of this morphological response. METHODS Yucatan miniature pigs received sham surgery (N = 1) or a moderate (N = 6, 20 g, 2.3 m/s) or high (N = 6, 20 g, 4.7 m/s) severity weight-drop SCI followed by 8 hours of sustained compression (100 g) and 6 hours of postdecompression monitoring. Sagittal-plane ultrasound images were used to quantify spinal cord, dura, and subarachnoid space dimensions preinjury and once per hour after decompression. RESULTS Animals with a moderate SCI exhibited a residual cord deformation of up to 0.64 mm within 10 minutes of decompression, which tended to resolve during 6 hours because of tissue relaxation and swelling. For animals with high-severity SCIs, cord swelling was immediate and resulted in occlusion of the subarachnoid space within 10 minutes to 5 hours, whereas this occurred for only half of the moderate injury group. CONCLUSION Decompression of an acute SCI may result in residual cord deformation followed by gradual swelling or immediate swelling leading to subarachnoid occlusion. The response is dependent on initial injury severity. These observations may partly explain the lack of benefit of decompression in some patients and suggest a need to reduce cord swelling to optimize the clinical outcome after acute SCI.
Collapse
|
44
|
Saxena T, Gilbert J, Stelzner D, Hasenwinkel J. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat. J Neurotrauma 2012; 29:1747-57. [PMID: 22435754 DOI: 10.1089/neu.2011.1818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glial scar formed at the site of traumatic spinal cord injury (SCI) has been classically hypothesized to be a potent physical and biochemical barrier to nerve regeneration. One longstanding hypothesis is that the scar acts as a physical barrier due to its increased stiffness in comparison to uninjured spinal cord tissue. However, the information regarding the mechanical properties of the glial scar in the current literature is mostly anecdotal and not well quantified. We monitored the mechanical relaxation behavior of injured rat spinal cord tissue at the site of mid-thoracic spinal hemisection 2 weeks and 8 weeks post-injury using a microindentation test method. Elastic moduli were calculated and a modified standard linear model (mSLM) was fit to the data to estimate the relaxation time constant and viscosity. The SLM was modified to account for a spectrum of relaxation times, a phenomenon common to biological tissues, by incorporating a stretched exponential term. Injured tissue exhibited significantly lower stiffness and elastic modulus in comparison to uninjured control tissue, and the results from the model parameters indicated that the relaxation time constant and viscosity of injured tissue were significantly higher than controls. This study presents direct micromechanical measurements of injured spinal cord tissue post-injury. The results of this study show that the injured spinal tissue displays complex viscoelastic behavior, likely indicating changes in tissue permeability and diffusivity.
Collapse
Affiliation(s)
- Tarun Saxena
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | |
Collapse
|
45
|
Russell CM, Choo AM, Tetzlaff W, Chung TE, Oxland TR. Maximum principal strain correlates with spinal cord tissue damage in contusion and dislocation injuries in the rat cervical spine. J Neurotrauma 2012; 29:1574-85. [PMID: 22320127 DOI: 10.1089/neu.2011.2225] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The heterogeneity of the primary mechanical mechanism of spinal cord injury (SCI) is not currently used to tailor treatment strategies because the effects of these distinct patterns of acute mechanical damage on long-term neuropathology have not been fully investigated. A computational model of SCI enables the dynamic analysis of mechanical forces and deformations within the spinal cord tissue that would otherwise not be visible from histological tissue sections. We created a dynamic, three-dimensional finite element (FE) model of the rat cervical spine and simulated contusion and dislocation SCI mechanisms. We investigated the relationship between maximum principal strain and tissue damage, and compared primary injury patterns between mechanisms. The model incorporated the spinal cord white and gray matter, the dura mater, cerebrospinal fluid, spinal ligaments, intervertebral discs, a rigid indenter and vertebrae, and failure criteria for ligaments and vertebral endplates. High-speed (∼ 1 m/sec) contusion and dislocation injuries were simulated between vertebral levels C3 and C6 to match previous animal experiments, and average peak maximum principal strains were calculated for several regions at the injury epicenter and at 1-mm intervals from +5 mm rostral to -5 mm caudal to the lesion. Average peak principal strains were compared to tissue damage measured previously in the same regions via axonal permeability to 10-kD fluorescein-dextran. Linear regression of tissue damage against peak maximum principal strain for pooled data within all white matter regions yielded similar and significant (p<0.0001) correlations for both contusion (R(2)=0.86) and dislocation (R(2)=0.52). The model enhances our understanding of the differences in injury patterns between SCI mechanisms, and provides further evidence for the link between principal strain and tissue damage.
Collapse
Affiliation(s)
- Colin M Russell
- Orthopaedic and Injury Biomechanics Group, Departments of Orthopaedics and Mechanical Engineering, University of British Columbia, British Columbia, Canada
| | | | | | | | | |
Collapse
|
46
|
Khaing ZZ, Milman BD, Vanscoy JE, Seidlits SK, Grill RJ, Schmidt CE. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J Neural Eng 2011; 8:046033. [PMID: 21753237 DOI: 10.1088/1741-2560/8/4/046033] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Sparrey CJ, Keaveny TM. Compression behavior of porcine spinal cord white matter. J Biomech 2011; 44:1078-82. [DOI: 10.1016/j.jbiomech.2011.01.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
48
|
Martin BA, Labuda R, Royston TJ, Oshinski JN, Iskandar B, Loth F. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. J Biomech Eng 2011; 132:111007. [PMID: 21034148 DOI: 10.1115/1.4000089] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Full explanation for the pathogenesis of syringomyelia (SM), a neuropathology characterized by the formation of a cystic cavity (syrinx) in the spinal cord (SC), has not yet been provided. It has been hypothesized that abnormal cerebrospinal fluid (CSF) pressure, caused by subarachnoid space (SAS) flow blockage (stenosis), is an underlying cause of syrinx formation and subsequent pain in the patient. However, paucity in detailed in vivo pressure data has made theoretical explanations for the syrinx difficult to reconcile. In order to understand the complex pressure environment, four simplified in vitro models were constructed to have anatomical similarities with post-traumatic SM and Chiari malformation related SM. Experimental geometry and properties were based on in vivo data and incorporated pertinent elements such as a realistic CSF flow waveform, spinal stenosis, syrinx, flexible SC, and flexible spinal column. The presence of a spinal stenosis in the SAS caused peak-to-peak cerebrospinal fluid CSF pressure fluctuations to increase rostral to the stenosis. Pressure with both stenosis and syrinx present was complex. Overall, the interaction of the syrinx and stenosis resulted in a diastolic valve mechanism and rostral tensioning of the SC. In all experiments, the blockage was shown to increase and dissociate SAS pressure, while the axial pressure distribution in the syrinx remained uniform. These results highlight the importance of the properties of the SC and spinal SAS, such as compliance and permeability, and provide data for comparison with computational models. Further research examining the influence of stenosis size and location, and the importance of tissue properties, is warranted.
Collapse
Affiliation(s)
- Bryn A Martin
- Integrative Bioscience Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
49
|
Persson C, Summers J, Hall RM. The importance of fluid-structure interaction in spinal trauma models. J Neurotrauma 2010; 28:113-25. [PMID: 21047151 DOI: 10.1089/neu.2010.1332] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While recent studies have demonstrated the importance of the initial mechanical insult in the severity of spinal cord injury, there is a lack of information on the detailed cord-column interaction during such events. In vitro models have demonstrated the protective properties of the cerebrospinal fluid, but visualization of the impact is difficult. In this study a computational model was developed in order to clarify the role of the cerebrospinal fluid and provide a more detailed picture of the cord-column interaction. The study was validated against a parallel in vitro study on bovine tissue. Previous assumptions about complete subdural collapse before any cord deformation were found to be incorrect. Both the presence of the dura mater and the cerebrospinal fluid led to a reduction in the longitudinal strains within the cord. The division of the spinal cord into white and grey matter perturbed the bone fragment trajectory only marginally. In conclusion, the cerebrospinal fluid had a significant effect on the deformation pattern of the cord during impact and should be included in future models. The type of material models used for the spinal cord and the dura mater were found to be important to the stress and strain values within the components, but less important to the fragment trajectory.
Collapse
Affiliation(s)
- Cecilia Persson
- School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom.
| | | | | |
Collapse
|
50
|
Norman LL, Aranda-Espinoza H. Cortical Neuron Outgrowth is Insensitive to Substrate Stiffness. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0137-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|