1
|
Trebbi A, Mukhina E, Rohan PY, Connesson N, Bailet M, Perrier A, Payan Y. MR-based quantitative measurement of human soft tissue internal strains for pressure ulcer prevention. Med Eng Phys 2022; 108:103888. [DOI: 10.1016/j.medengphy.2022.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
2
|
Lisický O, Hrubanová A, Staffa R, Vlachovský R, Burša J. Constitutive models and failure properties of fibrous tissues of carotid artery atheroma based on their uniaxial testing. J Biomech 2021; 129:110861. [PMID: 34775341 DOI: 10.1016/j.jbiomech.2021.110861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
To obtain an experimental background for the description of mechanical properties of fibrous tissues of carotid atheroma, a cohort of 141 specimens harvested from 44 patients during endarterectomies, were tested. Uniaxial stress-strain curves and ultimate stress and strain at rupture were recorded. With this cohort, the impact of the direction of load, presence of calcifications, specimen location, patient's age and sex were investigated. A significant impact of sex was revealed for the stress-strain curves and ultimate strains. The response was significantly stiffer for females than for males but, in contrast to ultimate strain, the strength was not significantly different. The differences in strength between calcified and non-calcified atheromas have reached statistical significance in the female group. At most of the analysed stress levels, the loading direction was found significant for the male cohort which was also confirmed by large differences in ultimate strains. The representative uniaxial stress-strain curves (given by median values of strains at chosen stress levels) were fitted with an isotropic hyperelastic model for different groups specified by the investigated factors while the observed differences between circumferential and longitudinal direction were captured by an anisotropic hyperelastic model. The obtained results should be valid also for the tissue of the fibrous cap, the rupture of which is to be predicted in clinics using computational modelling because it may induce arterial thrombosis and consequently a brain stroke.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic.
| | - Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| | - Robert Staffa
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Vlachovský
- 2(nd) Department of Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| |
Collapse
|
3
|
Cattaneo M, Wyttenbach R, Corti R, Staub D, Gallino A. The Growing Field of Imaging of Atherosclerosis in Peripheral Arteries. Angiology 2018; 70:20-34. [PMID: 29783854 DOI: 10.1177/0003319718776122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past decades, peripheral arteries have represented a model for the comprehension of atherosclerosis as well as for the development of new diagnostic imaging modalities and therapeutic strategies. Peripheral arteries may represent a window to study atherosclerosis. Pathology has prominently contributed to move the clinical and research attention from the arterial lumen stenosis and angiography to morphological and functional imaging techniques. Evidence from large and prospective cohort or randomized controlled studies is still modest. Nevertheless, several emerging imaging investigations represent a potential tool for a comprehensive "in vivo" evaluation of the entire natural history of peripheral atherosclerosis. This constitutes a demanding assignment, as it would be desirable to obtain both single-lesion focused and extensive arterial system views to achieve the most accurate prognostic information. Our narrative review rests upon the fundamental pathological evidence, summarizing the rapidly growing field of imaging of atherosclerosis in peripheral arteries and presenting a selection of both currently available and emerging imaging techniques.
Collapse
Affiliation(s)
- Mattia Cattaneo
- 1 Cardiovascular Medicine Department, Ospedale Regionale di Bellinzona e Valli, San Giovanni, Bellinzona, Switzerland
| | - Rolf Wyttenbach
- 2 Radiology Department, Ospedale Regionale di Bellinzona e Valli, San Giovanni, Bellinzona, Switzerland.,3 University of Bern, Bern, Switzerland
| | - Roberto Corti
- 4 Cardiology Department, HerzKlinik Hirslanden, Zurich, Switzerland
| | - Daniel Staub
- 5 Angiology Department, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Augusto Gallino
- 1 Cardiovascular Medicine Department, Ospedale Regionale di Bellinzona e Valli, San Giovanni, Bellinzona, Switzerland.,6 University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Coolen BF, Calcagno C, van Ooij P, Fayad ZA, Strijkers GJ, Nederveen AJ. Vessel wall characterization using quantitative MRI: what's in a number? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:201-222. [PMID: 28808823 PMCID: PMC5813061 DOI: 10.1007/s10334-017-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Collapse
Affiliation(s)
- Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands. .,Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
de Korte CL, Fekkes S, Nederveen AJ, Manniesing R, Hansen HRHG. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1613-1623. [PMID: 27249826 DOI: 10.1109/tuffc.2016.2572260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
Collapse
|
6
|
Speelman L, Teng Z, Nederveen AJ, van der Lugt A, Gillard JH. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment. Thromb Haemost 2016; 115:493-500. [PMID: 26791734 DOI: 10.1160/th15-09-0712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022]
Abstract
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.
Collapse
Affiliation(s)
- Lambert Speelman
- Dr. Lambert Speelman, Department of Biomedical Engineering, Ee 23.38B, P.O Box 2040, 3000 CA Rotterdam, the Netherlands, Tel.: +31 10 70 44039, Fax: +31 10 70 44720, E-mail:
| | | | | | | | | |
Collapse
|
7
|
Akyildiz AC, Speelman L, Nieuwstadt HA, van Brummelen H, Virmani R, van der Lugt A, van der Steen AFW, Wentzel JJ, Gijsen FJH. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Comput Methods Biomech Biomed Engin 2015; 19:771-9. [PMID: 26237279 DOI: 10.1080/10255842.2015.1062091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heart attacks are often caused by rupture of caps of atherosclerotic plaques in coronary arteries. Cap rupture occurs when cap stress exceeds cap strength. We investigated the effects of plaque morphology and material properties on cap stress. Histological data from 77 coronary lesions were obtained and segmented. In these patient-specific cross sections, peak cap stresses were computed by using finite element analyses. The finite element analyses were 2D, assumed isotropic material behavior, and ignored residual stresses. To represent the wide spread in material properties, we applied soft and stiff material models for the intima. Measures of geometric plaque features for all lesions were determined and their relations to peak cap stress were examined using regression analyses. Patient-specific geometrical plaque features greatly influence peak cap stresses. Especially, local irregularities in lumen and necrotic core shape as well as a thin intima layer near the shoulder of the plaque induce local stress maxima. For stiff models, cap stress increased with decreasing cap thickness and increasing lumen radius (R = 0.79). For soft models, this relationship changed: increasing lumen radius and increasing lumen curvature were associated with increased cap stress (R = 0.66). The results of this study imply that not only accurate assessment of plaque geometry, but also of intima properties is essential for cap stress analyses in atherosclerotic plaques in human coronary arteries.
Collapse
Affiliation(s)
- Ali C Akyildiz
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Lambert Speelman
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands.,b Interuniversity Cardiology Institute of the Netherlands (ICIN) , Utrecht , The Netherlands
| | - Harm A Nieuwstadt
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Harald van Brummelen
- c Department of Mechanical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands.,d Department of Mathematics and Computer Science , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - Renu Virmani
- e CVPath Institute, Inc. , Gaithersburg , MD , USA
| | - Aad van der Lugt
- f Department of Radiology , Erasmus Medical Center , Rotterdam , The Netherlands
| | - Anton F W van der Steen
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands.,g Department of Applied Sciences , Delft University of Technology, Delft , , The Netherlands
| | - Jolanda J Wentzel
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Frank J H Gijsen
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
8
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
9
|
Nieuwstadt HA, Fekkes S, Hansen HHG, de Korte CL, van der Lugt A, Wentzel JJ, van der Steen AFW, Gijsen FJH. Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA - A numerical feasibility study. Med Eng Phys 2015; 37:801-7. [PMID: 26130603 DOI: 10.1016/j.medengphy.2015.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022]
Abstract
The material properties of atherosclerotic plaques govern the biomechanical environment, which is associated with rupture-risk. We investigated the feasibility of noninvasively estimating carotid plaque component material properties through simulating ultrasound (US) elastography and in vivo magnetic resonance imaging (MRI), and solving the inverse problem with finite element analysis. 2D plaque models were derived from endarterectomy specimens of nine patients. Nonlinear neo-Hookean models (tissue elasticity C1) were assigned to fibrous intima, wall (i.e., media/adventitia), and lipid-rich necrotic core. Finite element analysis was used to simulate clinical cross-sectional US strain imaging. Computer-simulated, single-slice in vivo MR images were segmented by two MR readers. We investigated multiple scenarios for plaque model elasticity, and consistently found clear separations between estimated tissue elasticity values. The intima C1 (160 kPa scenario) was estimated as 125.8 ± 19.4 kPa (reader 1) and 128.9 ± 24.8 kPa (reader 2). The lipid-rich necrotic core C1 (5 kPa) was estimated as 5.6 ± 2.0 kPa (reader 1) and 8.5 ± 4.5 kPa (reader 2). A scenario with a stiffer wall yielded similar results, while realistic US strain noise and rotating the models had little influence, thus demonstrating robustness of the procedure. The promising findings of this computer-simulation study stimulate applying the proposed methodology in a clinical setting.
Collapse
Affiliation(s)
- H A Nieuwstadt
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | - S Fekkes
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - H H G Hansen
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C L de Korte
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - A van der Lugt
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - J J Wentzel
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - A F W van der Steen
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - F J H Gijsen
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Affiliation(s)
- Frank J H Gijsen
- Biomedical Engineering, Department of Cardiology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Francesco Migliavacca
- Chemistry, Materials and Chemical Engineering 'Giulio Natta' Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| |
Collapse
|