1
|
Csippa B, Friedrich P, Szikora I, Paál G. Amplification of Secondary Flow at the Initiation Site of Intracranial Sidewall Aneurysms. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00771-4. [PMID: 39871029 DOI: 10.1007/s13239-025-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
PURPOSE The initiation of intracranial aneurysms has long been studied, mainly by the evaluation of the wall shear stress field. However, the debate about the emergence of hemodynamic stimuli still persists. This paper builds on our previous hypothesis that secondary flows play an important role in the formation cascade by examining the relationship between flow physics and vessel geometry. METHODS A composite evaluation framework was developed to analyze the simulated flow field in perpendicular cross-sections along the arterial centerline. The velocity field was decomposed into secondary flow components around the centerline in these cross-sections, allowing the direct comparison of the flow features with the geometrical parameters of the centerline. Qualitative and statistical analysis was performed to identify links between morphology, flow, and the formation site of the aneurysms. RESULTS The normalized mean curvature and curvature peak were significantly higher in the aneurysmal bends than in other arterial bends. Similarly, a significant difference was found for the normalized mean velocity ( p = 0.0274 ), the circumferential ( p = 0.0029 ), and radial ( p = 0.0057 ) velocity components between the arterial bends harboring the aneurysm than in other arterial bends. In contrast, the difference of means for the normalized axial velocity is insignificant ( p = 0.1471 ). CONCLUSION Thirty cases with aneurysms located on the ICA were analyzed in the virtually reconstructed pre-aneurysmal state by an in-silico study. We found that sidewall aneurysm formation on the ICA is more probable in these arterial bends with the highest case-specific curvature, which are accompanied by the highest case-specific secondary flows (circumferential and radial velocity components) than in other bends.
Collapse
Affiliation(s)
- Benjamin Csippa
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary.
| | - Péter Friedrich
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary
| | - István Szikora
- Department Neurointerventions, Semmelweis University, Department for Neurosurgery and Neurointerventions, Amerikai út 57., Budapest, Hungary
| | - György Paál
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 1-3, Budapest, 1111, Hungary
| |
Collapse
|
2
|
Bark DL, Vital EF, Oury C, Lam WA, Gardiner EE. Recommendations for defining disturbed flow as laminar, transitional, or turbulent in assays of hemostasis and thrombosis: communication from the ISTH SSC Subcommittee on Biorheology. J Thromb Haemost 2025; 23:345-358. [PMID: 39395542 DOI: 10.1016/j.jtha.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Blood flow is vital to life, yet disturbed flow has been linked to atherosclerosis, thrombosis, and endothelial dysfunction. The commonly used hemodynamic descriptor "disturbed flow" found in disease and medical devices is not clearly defined in many studies. However, the specific flow regime-laminar, transitional, or turbulent-can have very different effects on hemostasis, thrombosis, and vascular health. Therefore, it remains important to clinically identify turbulence in cardiovascular flow and to have available assays that can be used to study effects of turbulence. The objective of the current communication was to 1) provide clarity and guidance for how to clinically identify turbulence, 2) define standard measures of turbulence that can allow the recreation of flow conditions in a benchtop assay, and 3) review how cells and proteins in the blood can be impacted by turbulence based on current literature.
Collapse
Affiliation(s)
- David L Bark
- Department of Pediatrics, Division of Hematology and Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cécile Oury
- GIGA Metabolism and Cardiovascular Biology - Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Shimogonya Y, Fukuda S. Role of disturbed wall shear stress in the development of cerebral aneurysms. J Biomech 2024; 176:112355. [PMID: 39369626 DOI: 10.1016/j.jbiomech.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Although the hemodynamics of cerebral aneurysms have been extensively studied using patient-specific computational fluid dynamics techniques, no specific hemodynamic factors characteristic of cerebral aneurysm development have yet been identified. We believe that one problem with previous hemodynamic studies of cerebral aneurysms has been the manner in which control groups were created for comparison with experimental groups. The purpose of this study was to determine hemodynamic factors that correlated with the development of cerebral aneurysms. The control group was established in a manner that differed from those of previous works. This allowed us to demonstrate the effectiveness of our method. We artificially removed aneurysms in the middle cerebral artery bifurcations of nine patients and reconstructed the vessel geometries before the aneurysms had occurred. Pulsatile blood flow simulations were performed using the vessel geometries ipsilateral and contralateral to the sites of aneurysm removal, and hemodynamic metrics were calculated. Use of the ipsilateral and contralateral sides as the experimental and control sites, respectively, allowed us to evaluate statistically the hemodynamic metrics between the two corresponding sites/groups. The results showed that only the normalized transverse wall shear stress (NtransWSS) was significantly higher at the MCA bifurcation ipsilateral to the site of aneurysm removal than at the contralateral bifurcation (p = 0.01). There were no significant differences in the other hemodynamic metrics between the bilateral bifurcations. Our findings imply that multi-directional disturbed wall shear stress, which is detected by the NtransWSS metric, may be one hemodynamic risk factor for the development of cerebral aneurysms.
Collapse
Affiliation(s)
- Yuji Shimogonya
- Department of Mechanical Engineering, College of Engineering, Nihon University, Koriyama, Japan.
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
4
|
Soliveri L, Bruneau D, Ring J, Bozzetto M, Remuzzi A, Valen-Sendstad K. Toward a physiological model of vascular wall vibrations in the arteriovenous fistula. Biomech Model Mechanobiol 2024; 23:1741-1755. [PMID: 38977647 DOI: 10.1007/s10237-024-01865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
The mechanism behind hemodialysis arteriovenous fistula (AVF) failure remains poorly understood, despite previous efforts to correlate altered hemodynamics with vascular remodeling. We have recently demonstrated that transitional flow induces high-frequency vibrations in the AVF wall, albeit with a simplified model. This study addresses the key limitations of our original fluid-structure interaction (FSI) approach, aiming to evaluate the vibration response using a more realistic model. A 3D AVF geometry was generated from contrast-free MRI and high-fidelity FSI simulations were performed. Patient-specific inflow and pressure were incorporated, and a three-term Mooney-Rivlin model was fitted using experimental data. The viscoelastic effect of perivascular tissue was modeled with Robin boundary conditions. Prescribing pulsatile inflow and pressure resulted in a substantial increase in vein displacement ( + 400 %) and strain ( + 317 %), with a higher maximum spectral frequency becoming visible above -42 dB (from 200 to 500 Hz). Transitioning from Saint Venant-Kirchhoff to Mooney-Rivlin model led to displacement amplitudes exceeding 10 micrometers and had a substantial impact on strain ( + 116 %). Robin boundary conditions significantly damped high-frequency displacement ( - 60 %). Incorporating venous tissue properties increased vibrations by 91%, extending up to 700 Hz, with a maximum strain of 0.158. Notably, our results show localized, high levels of vibration at the inner curvature of the vein, a site known for experiencing pronounced remodeling. Our findings, consistent with experimental and clinical reports of bruits and thrills, underscore the significance of incorporating physiologically plausible modeling approaches to investigate the role of wall vibrations in AVF remodeling and failure.
Collapse
Affiliation(s)
- Luca Soliveri
- Department of Bioengineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - David Bruneau
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Johannes Ring
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Michela Bozzetto
- Department of Bioengineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
| | | |
Collapse
|
5
|
Huang F, Janiga G, Berg P, Hosseini SA. On flow fluctuations in ruptured and unruptured intracranial aneurysms: resolved numerical study. Sci Rep 2024; 14:19658. [PMID: 39179594 PMCID: PMC11344026 DOI: 10.1038/s41598-024-70340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Flow fluctuations have emerged as a promising hemodynamic metric for understanding of hemodynamics in intracranial aneurysms. Several investigations have reported flow instabilities using numerical tools. In this study, the occurrence of flow fluctuations is investigated using either Newtonian or non-Newtonian fluid models in five patient-specific intracranial aneurysms using high-resolution lattice Boltzmann simulation methods. Flow instabilities are quantified by computing power spectral density, proper orthogonal decomposition, and fluctuating kinetic energy of velocity fluctuations. Our simulations reveal substantial flow instabilities in two of the ruptured aneurysms, where the pulsatile inflow through the neck leads to hydrodynamic instability, particularly around the rupture position, throughout the entire cardiac cycle. In other monitoring points, the flow instability is primarily observed during the deceleration phase; typically, the fluctuations begin just after peak systole, gradually decay, and the flow returns to its original, laminar pulsatile state during diastole. Additionally, we assess the rheological impact on flow dynamics. The disparity between Newtonian and non-Newtonian outcomes remains minimal in unruptured aneurysms, with less than a 5% difference in key metrics. However, in ruptured cases, adopting a non-Newtonian model yields a substantial increase in the fluctuations within the aneurysm sac, with up to a 30% higher fluctuating kinetic energy compared to the Newtonian model. The study highlights the importance of using appropriate high-resolution simulations and non-Newtonian models to capture flow fluctuation characteristics that may be critical for assessing aneurysm rupture risk.
Collapse
Affiliation(s)
- Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
- Department of Medical Engineering, Otto-von-Guericke-University Magdeburg, D-39106, Magdeburg, Germany
| | - Seyed Ali Hosseini
- Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
6
|
Carrara E, Soliveri L, Poloni S, Bozzetto M, Campiglio CE. Effects of high-frequency mechanical stimuli on flow related vascular cell biology. Int J Artif Organs 2024; 47:590-601. [PMID: 39166431 PMCID: PMC11487902 DOI: 10.1177/03913988241268105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Mechanical forces related to blood pressure and flow patterns play a crucial role in vascular homeostasis. Perturbations in vascular stresses and strain resulting from changes in hemodynamic may occur in pathological conditions, leading to vascular dysfunction as well as in vascular prosthesis, arteriovenous shunt for hemodialysis and in mechanical circulation support. Turbulent-like blood flows can induce high-frequency vibrations of the vessel wall, and this stimulus has recently gained attention as potential contributors to vascular pathologies, such as development of intimal hyperplasia in arteriovenous fistula for hemodialysis. However, the biological response of vascular cells to this stimulus remains incompletely understood. This review provides an analysis of the existing literature concerning the impact of high-frequency stimuli on vascular cell morphology, function, and gene expression. Morphological and functional investigations reveal that vascular cells stimulated at frequencies higher than the normal heart rate exhibit alterations in cell shape, alignment, and proliferation, potentially leading to vessel remodeling. Furthermore, vibrations modulate endothelial and smooth muscle cells gene expression, affecting pathways related to inflammation, oxidative stress, and muscle hypertrophy. Understanding the effects of high-frequency vibrations on vascular cells is essential for unraveling the mechanisms underlying vascular diseases and identifying potential therapeutic targets. Nevertheless, there are still gaps in our understanding of the molecular pathways governing these cellular responses. Further research is necessary to elucidate these mechanisms and their therapeutic implications for vascular diseases.
Collapse
Affiliation(s)
- Elena Carrara
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Luca Soliveri
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Sofia Poloni
- Department of Engineering and Applied Sciences, University of Bergamo, Dalmine, Italy
| | - Michela Bozzetto
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Chiara Emma Campiglio
- Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
7
|
Luciano RD, da Silva BL, Chen XB, Bergstrom DJ. Turbulent blood flow in a cerebral artery with an aneurysm. J Biomech 2024; 172:112214. [PMID: 38991421 DOI: 10.1016/j.jbiomech.2024.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Unruptured intracranial aneurysms are common in the general population, and many uncertainties remain when predicting rupture risks and treatment outcomes. One of the cutting-edge tools used to investigate this condition is computational fluid dynamics (CFD). However, CFD is not yet mature enough to guide the clinical management of this disease. In addition, recent studies have reported significant flow instabilities when refined numerical methods are used. Questions remain as to how to properly simulate and evaluate this flow, and whether these instabilities are really turbulence. The purpose of the present study is to evaluate the impact of the simulation setup on the results and investigate the occurrence of turbulence in a cerebral artery with an aneurysm. For this purpose, direct numerical simulations were performed with up to 200 cardiac cycles and with data sampling rates of up to 100,000 times per cardiac cycle. Through phase-averaging or triple decomposition, the contributions of turbulence and of laminar pulsatile waves to the velocity, pressure and wall shear stress fluctuations were distinguished. For example, the commonly used oscillatory shear index was found to be closely related to the laminar waves introduced at the inlet, rather than turbulence. The turbulence energy cascade was evaluated through energy spectrum estimates, revealing that, despite the low flow rates and Reynolds number, the flow is turbulent near the aneurysm. Phase-averaging was shown to be an approach that can help researchers better understand this flow, although the results are highly dependent on simulation setup and post-processing choices.
Collapse
Affiliation(s)
- R D Luciano
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada.
| | - B L da Silva
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| | - X B Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| | - D J Bergstrom
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Canada
| |
Collapse
|
8
|
Gunasekera S, de Silva C, Ng O, Thomas S, Varcoe R, Barber T. Stenosis to stented: decrease in flow disturbances following stent implantation of a diseased arteriovenous fistula. Biomech Model Mechanobiol 2024; 23:453-468. [PMID: 38063956 DOI: 10.1007/s10237-023-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/14/2023] [Indexed: 03/26/2024]
Abstract
The arteriovenous fistula (AVF) is commonly faced with stenosis at the juxta-anastomotic (JXA) region of the vein. Implantation of a flexible nitinol stent across the stenosed JXA has led to the retention of functioning AVFs leading to the resulting AVF geometry being distinctly altered, thereby affecting the haemodynamic environment within it. In this study, large eddy simulations of the flow field within a patient-specific AVF geometry before and after stent implantation were conducted to detail the change in flow features. Although the diseased AVF had much lower flow rates, adverse flow features, such as recirculation zones and swirling flow at the anastomosis, and jet flow at the stenosis site were present. Larger velocity fluctuations (leading to higher turbulent kinetic energy) stemming from these flow features were apparent in the diseased AVF compared to the stented AVF. The unsteadiness at the stenosis created large regions of wall shear stress (WSS) fluctuations downstream of the stenosis site that were not as apparent in the stented AVF geometry. The larger pressure drop across the diseased vein, compared to the stented vein, was primarily caused by the constriction at the stenosis, potentially causing the lower flow rate. Furthermore, the WSS fluctuations in the diseased AVF could lead to further disease progression downstream of the stenosis. The change in bulk flow unsteadiness, pressure drop, and WSS behaviour confirms that the haemodynamic environment of the diseased AVF has substantially improved following the flexible stent implantation.
Collapse
Affiliation(s)
- Sanjiv Gunasekera
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Charitha de Silva
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Olivia Ng
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shannon Thomas
- Department of Vascular Surgery, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Ramon Varcoe
- Department of Vascular Surgery, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Tracie Barber
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Bozzetto M, Remuzzi A, Valen-Sendstad K. Flow-induced high frequency vascular wall vibrations in an arteriovenous fistula: a specific stimulus for stenosis development? Phys Eng Sci Med 2024; 47:187-197. [PMID: 38157188 DOI: 10.1007/s13246-023-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
Hemodialysis is the lifeline for nearly three million end stage renal disease patients worldwide. Native arteriovenous fistula (AVF) is the preferred vascular access, but 40% fail within 1 year. We recently demonstrated that AVFs harbour transitional flows and the goal of the present study was to investigate whether the associated high-frequency pressure fluctuations could promote vibrations within the vascular wall. We acquired MRI images and flow rates immediately after surgery in one patient and generated a 3D patient-specific model. High-fidelity fluid structure interaction simulations revealed the presence of wall vibrations in distinct frequency bands up to 200 Hz and amplitude of 200 μm. A sensitivity analysis to assess the impact of flow rates, and vascular wall stiffness and thickness, changes that typically occur during AVF maturation, confirmed the robustness of the results. Interestingly, the vibrations were always predominant at the anastomosis floor and on the inner venous side, which correlates with typical stenotic regions. As studies seeking to correlate aberrant stresses and vascular remodelling have been largely inconclusive, the focal colocalization between vibrations and stenosis may suggest an unknown mechanobiological process between high-frequency mechanical stresses within the vascular wall and adverse vascular remodelling.
Collapse
Affiliation(s)
- Michela Bozzetto
- Bioengineering Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, BG, Italy
| | - Andrea Remuzzi
- Department of Management Information and Production Engineering, University of Bergamo, Via G.B. Marconi 5, Dalmine, BG, Italy.
| | | |
Collapse
|
10
|
Kjeldsberg HA, Sundnes J, Valen-Sendstad K. A verified and validated moving domain computational fluid dynamics solver with applications to cardiovascular flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3703. [PMID: 37020156 DOI: 10.1002/cnm.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 06/07/2023]
Abstract
Computational fluid dynamics (CFD) in combination with patient-specific medical images has been used to correlate flow phenotypes with disease initiation, progression and outcome, in search of a prospective clinical tool. A large number of CFD software packages are available, but are typically based on rigid domains and low-order finite volume methods, and are often implemented in massive low-level C++ libraries. Furthermore, only a handful of solvers have been appropriately verified and validated for their intended use. Our goal was to develop, verify and validate an open-source CFD solver for moving domains, with applications to cardiovascular flows. The solver is an extension of the CFD solver Oasis, which is based on the finite element method and implemented using the FEniCS open source framework. The new solver, named OasisMove, extends Oasis by expressing the Navier-Stokes equations in the arbitrary Lagrangian-Eulerian formulation, which is suitable for handling moving domains. For code verification we used the method of manufactured solutions for a moving 2D vortex problem, and for validation we compared our results against existing high-resolution simulations and laboratory experiments for two moving domain problems of varying complexity. Verification results showed that the L 2 error followed the theoretical convergence rates. The temporal accuracy was second-order, while the spatial accuracy was second- and third-order using ℙ 1 / ℙ 1 and ℙ 2 / ℙ 1 finite elements, respectively. Validation results showed good agreement with existing benchmark results, by reproducing lift and drag coefficients with less than 1% error, and demonstrating the solver's ability to capture vortex patterns in transitional and turbulent-like flow regimes. In conclusion, we have shown that OasisMove is an open-source, accurate and reliable solver for cardiovascular flows in moving domains.
Collapse
Affiliation(s)
- Henrik A Kjeldsberg
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Joakim Sundnes
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | | |
Collapse
|
11
|
Vagner SA, Gorina AV, Konovalov AN, Grebenev FV, Telyshev DV. Simulation of Hemodynamics in a Giant Cerebral Aneurysm. BIOMEDICAL ENGINEERING 2023. [DOI: 10.1007/s10527-023-10245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
12
|
High-fidelity fluid structure interaction simulations of turbulent-like aneurysm flows reveals high-frequency narrowband wall vibrations: A stimulus of mechanobiological relevance? J Biomech 2022; 145:111369. [PMID: 36375263 DOI: 10.1016/j.jbiomech.2022.111369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Recent high-fidelity/resolution computational fluid dynamics simulations of intracranial aneurysm hemodynamics have revealed turbulent-like flows. We hypothesized that the associated high-frequency pressure fluctuations could promote aneurysm wall vibrations. We performed fully coupled high-fidelity transient fluid structure interaction simulations between the blood flow and compliant aneurysm sac wall taking 5,000 time steps per second using a 3D patient-specific model previously shown to harbour turbulent-like flow. Our results show that the flow velocity contained fluctuations with a smooth and continuously decaying energy up to ∼160Hz, and fluctuating pressures with characteristic frequency peaks at approximately 30, 130 and 210Hz. There was a strong two-way coupling between the pressure and the wall deformation, for which the frequency spectrum showed similar characteristics, but with a narrow band peak at ∼120Hz with large regional differences in amplitude up to 80μm. The physics of the flow is broadly consistent with clinical reports of turbulent-like flows, while the physics of the wall is consistent with reports of spectral peaks in aneurysm patients. As many aneurysms are known to harbour turbulent-like flows, wall vibrations could be a widespread phenomenon. Finally, since aneurysms are vascular pathologies by definition and many/most aneurysms do not have endothelial cells but still display a focal remodeling, we hypothesize that vibrations and stresses within the wall itself might play a role in the mechanobiological processes of vessel wall pathology.
Collapse
|
13
|
Bozzetto M, Soliveri L, Volpi J, Remuzzi A, Barbieri A, Lanterna LAA, Lanzarone E. Computational fluid dynamic modeling of flow-altering surgical procedures: feasibility assessment on saccular aneurysm case study. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2022.2140310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Michela Bozzetto
- Laboratory of Medical Imaging, Istituto di Ricerche Famacologiche “Mario Negri” IRCCS, Ranica, Italy
| | - Luca Soliveri
- Laboratory of Medical Imaging, Istituto di Ricerche Famacologiche “Mario Negri” IRCCS, Ranica, Italy
| | - Jessica Volpi
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| | - Andrea Remuzzi
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| | - Antonio Barbieri
- Department of Neurosurgery, San Carlo Borromeo Hospital, Milan, Italy
| | | | - Ettore Lanzarone
- Department of Management, Information and Production and Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
14
|
Liu S, Jin Y, Wang X, Zhang Y, Jiang L, Li G, Zhao X, Jiang T. Increased Carotid Siphon Tortuosity Is a Risk Factor for Paraclinoid Aneurysms. Front Neurol 2022; 13:869459. [PMID: 35620791 PMCID: PMC9127410 DOI: 10.3389/fneur.2022.869459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Geometrical factors associated with the surrounding vasculature can affect the risk of aneurysm formation. The aim of this study was to determine the association between carotid siphon curvature and the formation and development of paraclinoid aneurysms of the internal carotid artery. Methods Digital subtraction angiography (DSA) data from 42 patients with paraclinoid aneurysms (31 with non-aneurysmal contralateral sides) and 42 age- and gender-matched healthy controls were analyzed, retrospectively. Morphological characteristics of the carotid siphon [the posterior angle (α), anterior angle (β), and Clinoid@Ophthalmic angle (γ)] were explored via three-dimensional rotational angiography (3D RA) multiplanar reconstruction. The association between carotid siphon morphology and the formation of paraclinoid aneurysms was assessed through univariate analysis. After this, logistic regression analysis was performed to identify independent risk factors for aneurysms. Results Significantly smaller α, β, and γ angles were reported in the aneurysmal carotid siphon group when compared with the non-aneurysmal contralateral healthy controls. The β angle was best for discriminating between aneurysmal and non-aneurysmal carotid siphons, with an optimal threshold of 18.25°. By adjusting for hypertension, smoking habit, hyperlipidemia, and diabetes mellitus, logistic regression analysis demonstrated an independent association between the carotid siphons angles α [odds ratio (OR) 0.953; P < 0.05], β (OR 0.690; P < 0.001), and γ (OR 0.958; P < 0.01) with the risk of paraclinoid aneurysms. Conclusions The present findings provide evidence for the importance of morphological carotid siphon variations and the likelihood of paraclinoid aneurysms. These practical morphological parameters specific to paraclinoid aneurysms are easy to assess and may aid in risk assessment in these patients.
Collapse
Affiliation(s)
- Shilin Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Jin
- Department of Neurology, Bozhou City Peoples Hospital, Bozhou, China
| | - Xukou Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Luwei Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanqing Li
- Department of Neurology, Bozhou City Peoples Hospital, Bozhou, China
| | - Xi Zhao
- Philips Healthcare China, Shanghai, China
| | - Tao Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
15
|
Fan Z, Dong L, Zhang Y, Ye X, Deng X. Hemodynamic impact of proximal anterior cerebral artery aneurysm: Mind the posteriorly projecting ones! Proc Inst Mech Eng H 2022; 236:656-664. [DOI: 10.1177/09544119221082420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracranial aneurysm projected posteriorly is associated with high risk of aneurysm rupture. In order to investigate the biomechanical mechanisms for the adverse event, three-dimension intracranial cerebral aneurysms were constructed based on clinical data, and we numerically compared effect of location, position, size, and shape of aneurysm on hemodynamic conditions including velocity, pressure, and wall shear stress (WSS). The numerical results showed that the aneurysm projected posteriorly even at small sizes led to abnormal hemodynamic environment, which was featured by a local high pressure and stress concentration near aneurysm neck area. Moreover, the one located at the proximal A1 segment and ellipsoidal aneurysm would further worse local hemodynamic environment, causing high local stresses. These findings indicated the potential mechanical mechanism for high rupture rate of the aneurysms projected posteriorly, underscoring importance of early and accurate diagnosis and promptly treatment for improved the clinical outcome, even if these aneurysms are of small sizes.
Collapse
Affiliation(s)
- Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Lijun Dong
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xia Ye
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
16
|
Integrating computational fluid dynamics data into medical image visualization workflows via DICOM. Int J Comput Assist Radiol Surg 2022; 17:1143-1154. [DOI: 10.1007/s11548-022-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
|
17
|
Kjeldsberg HA, Bergersen AW, Valen-Sendstad K. Automated landmarking of bends in vascular structures: a comparative study with application to the internal carotid artery. Biomed Eng Online 2021; 20:120. [PMID: 34838018 PMCID: PMC8626959 DOI: 10.1186/s12938-021-00957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Automated tools for landmarking the internal carotid artery (ICA) bends have the potential for efficient and objective medical image-based morphometric analysis. The two existing algorithms rely on numerical approximations of curvature and torsion of the centerline. However, input parameters, original source code, comparability, and robustness of the algorithms remain unknown. To address the former two, we have re-implemented the algorithms, followed by sensitivity analyses. Of the input parameters, the centerline smoothing had the least impact resulting in 6-7 bends, which is anatomically realistic. In contrast, centerline resolution showed to completely over- and underestimated the number of bends varying from 3 to 33. Applying the algorithms to the same cohort revealed a variability that makes comparison of results between previous studies questionable. Assessment of robustness revealed how one algorithm is vulnerable to model smoothness and noise, but conceptually independent of application. In contrast, the other algorithm is robust and consistent, but with limited general applicability. In conclusion, both algorithms are equally valid albeit they produce vastly different results. We have provided a well-documented open-source implementation of the algorithms. Finally, we have successfully performed this study on the ICA, but application to other vascular regions should be performed with caution.
Collapse
Affiliation(s)
- Henrik A Kjeldsberg
- Department of Computational Physiology, Simula Research Laboratory AS, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Aslak W Bergersen
- Department of Computational Physiology, Simula Research Laboratory AS, Kristian Augusts gate 23, 0164 Oslo, Norway
| | - Kristian Valen-Sendstad
- Department of Computational Physiology, Simula Research Laboratory AS, Kristian Augusts gate 23, 0164 Oslo, Norway
| |
Collapse
|
18
|
Haley AL, Valen-Sendstad K, Steinman DA. On delayed transition to turbulence in an eccentric stenosis model for clean vs. noisy high-fidelity CFD. J Biomech 2021; 125:110588. [PMID: 34218038 DOI: 10.1016/j.jbiomech.2021.110588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
Recent comparisons between experiments and computational fluid dynamics (CFD) simulations of flow in the Food and Drug Administration (FDA) standardized nozzle geometry have highlighted the potential sensitivity of axisymmetric CFD models to small perturbations induced by mesh and inlet velocity, particularly for Reynolds numbers (Re) in the transitional regime. This evokes the classic experiment of Reynolds on transition to turbulence in a straight pipe, which can be delayed, apparently indefinitely, if special care is taken to control for external influences. Such idealized experiments are, however, extremely difficult to perform and, in the context of cardiovascular modeling, belie the "noise" inherent in typical experimental and physiological systems. Previous high-fidelity CFD of a canonical eccentric (i.e., non-axisymmetric) stenosis model showed transition occurring for steady flow at Re ~ 700-800, with modest delay caused by the introduction of shear-thinning rheology. On the other hand, recent experimental measurements of steady flowing blood and blood-mimicking fluids in this same stenosis model report transition for Re ~ 400-500. Taking a cue from the FDA nozzle controversy, the present study demonstrates that the addition of small-magnitude random noise at the inlet brings the eccentric-stenosis CFD results more in-line with experiments, and reveals a more gradual transition towards turbulence. This highlights that, even in non-axisymmetric idealized geometries, unnaturally "clean" high-fidelity CFD may impede not only good agreement with experiments, but also understanding of the onset and character of blood flow instabilities as they may exist, naturally, in the vasculature.
Collapse
Affiliation(s)
- A L Haley
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - K Valen-Sendstad
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Norway
| | - D A Steinman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Torner B, Konnigk L, Abroug N, Wurm H. Turbulence and turbulent flow structures in a ventricular assist device-A numerical study using the large-eddy simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3431. [PMID: 33336869 DOI: 10.1002/cnm.3431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Numerical flow simulations that analyze the turbulent flow characteristics within a turbopump are important for optimizing the efficiency of such machines. In the case of ventricular assist devices (VADs), turbulent flow characteristics must be also examined in order to improve hemocompatibility. Turbulence increases the shear stresses in the VAD flow, which can lead to an increased damage to the transported blood components. Therefore, an understanding of the turbulent flow patterns and their significance for the numerical blood damage prediction is particularly important for flow optimizations in VADs in order to identify and thus minimize flow regions where blood could be damaged due to high turbulent stresses. Nevertheless, the turbulence occurring in VADs and the local turbulent structures that lead to increased turbulent stresses have not yet been analyzed in detail in these machines. Therefore, this study aims to investigate the turbulence in an axial VAD in a comprehensive and double tracked way. First, the flow in an axial VAD was computed using the large-eddy simulation method, and it was verified that the majority of the turbulence was directly resolved by the simulation. Then, the turbulent flow state of the VAD was quantified globally. For this purpose, a self-designed evaluation method, the power loss analysis, was used. Subsequently, local flow regions and flow structures were identified where significant turbulent stresses prevail. It will be shown that the identified regions are universal and will also occur in other axial blood pumps as well, for example, in the HeartMate II.
Collapse
Affiliation(s)
- Benjamin Torner
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Lucas Konnigk
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Nada Abroug
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Mahrous SA, Sidik NAC, Saqr KM. Numerical study on the energy cascade of pulsatile Newtonian and power-law flow models in an ICA bifurcation. PLoS One 2021; 16:e0245775. [PMID: 33493237 PMCID: PMC7833255 DOI: 10.1371/journal.pone.0245775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physics and biology underlying intracranial hemodynamics are yet to be fully revealed. A fully resolved direct numerical simulation (DNS) study has been performed to identify the intrinsic flow dynamics in an idealized carotid bifurcation model. To shed the light on the significance of considering blood shear-thinning properties, the power-law model is compared to the commonly used Newtonian viscosity hypothesis. We scrutinize the kinetic energy cascade (KEC) rates in the Fourier domain and the vortex structure of both fluid models and examine the impact of the power-law viscosity model. The flow intrinsically contains coherent structures which has frequencies corresponding to the boundary frequency, which could be associated with the regulation of endothelial cells. From the proposed comparative study, it is found that KEC rates and the vortex-identification are significantly influenced by the shear-thinning blood properties. Conclusively, from the obtained results, it is found that neglecting the non-Newtonian behavior could lead to underestimation of the hemodynamic parameters at low Reynolds number and overestimation of the hemodynamic parameters by increasing the Reynolds number. In addition, we provide physical insight and discussion onto the hemodynamics associated with endothelial dysfunction which plays significant role in the pathogenesis of intracranial aneurysms.
Collapse
Affiliation(s)
- Samar A. Mahrous
- Department of Thermo-Fluid Universiti Teknologi Malaysia, Skudai, Malaysia
- College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
- * E-mail:
| | - Nor Azwadi Che Sidik
- Department of Thermo-Fluid Universiti Teknologi Malaysia, Skudai, Malaysia
- Malaysia–Japan International Institute of Technology (MJIIT), University Teknologi Malaysia Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Khalid M. Saqr
- College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
21
|
Model Verification and Error Sensitivity of Turbulence-Related Tensor Characteristics in Pulsatile Blood Flow Simulations. FLUIDS 2020. [DOI: 10.3390/fluids6010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Model verification, validation, and uncertainty quantification are essential procedures to estimate errors within cardiovascular flow modeling, where acceptable confidence levels are needed for clinical reliability. While more turbulent-like studies are frequently observed within the biofluid community, practical modeling guidelines are scarce. Verification procedures determine the agreement between the conceptual model and its numerical solution by comparing for example, discretization and phase-averaging-related errors of specific output parameters. This computational fluid dynamics (CFD) study presents a comprehensive and practical verification approach for pulsatile turbulent-like blood flow predictions by considering the amplitude and shape of the turbulence-related tensor field using anisotropic invariant mapping. These procedures were demonstrated by investigating the Reynolds stress tensor characteristics in a patient-specific aortic coarctation model, focusing on modeling-related errors associated with the spatiotemporal resolution and phase-averaging sampling size. Findings in this work suggest that attention should also be put on reducing phase-averaging related errors, as these could easily outweigh the errors associated with the spatiotemporal resolution when including too few cardiac cycles. Also, substantially more cycles are likely needed than typically reported for these flow regimes to sufficiently converge the phase-instant tensor characteristics. Here, higher degrees of active fluctuating directions, especially of lower amplitudes, appeared to be the most sensitive turbulence characteristics.
Collapse
|
22
|
Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A, D'Souza RM. Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105729. [PMID: 33007592 DOI: 10.1016/j.cmpb.2020.105729] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Time resolved three-dimensional phase contrast magnetic resonance imaging (4D-Flow MRI) has been used to non-invasively measure blood velocities in the human vascular system. However, issues such as low spatio-temporal resolution, acquisition noise, velocity aliasing, and phase-offset artifacts have hampered its clinical application. In this research, we developed a purely data-driven method for super-resolution and denoising of 4D-Flow MRI. METHODS The flow velocities, pressure, and the MRI image magnitude are modeled as a patient-specific deep neural net (DNN). For training, 4D-Flow MRI images in the complex Cartesian space are used to impose data-fidelity. Physics of fluid flow is imposed through regularization. Creative loss function terms have been introduced to handle noise and super-resolution. The trained patient-specific DNN can be sampled to generate noise-free high-resolution flow images. The proposed method has been implemented using the TensorFlow DNN library and tested on numerical phantoms and validated in-vitro using high-resolution particle image velocitmetry (PIV) and 4D-Flow MRI experiments on transparent models subjected to pulsatile flow conditions. RESULTS In case of numerical phantoms, we were able to increase spatial resolution by a factor of 100 and temporal resolution by a factor of 5 compared to the simulated 4D-Flow MRI. There is an order of magnitude reduction of velocity normalized root mean square error (vNRMSE). In case of the in-vitro validation tests with PIV as reference, there is similar improvement in spatio-temporal resolution. Although the vNRMSE is reduced by 50%, the method is unable to negate a systematic bias with respect to the reference PIV that is introduced by the 4D-Flow MRI measurement. CONCLUSIONS This work has demonstrated the feasibility of using the readily available machinery of deep learning to enhance 4D-Flow MRI using a purely data-driven method. Unlike current state-of-the-art methods, the proposed method is agnostic to geometry and boundary conditions and therefore eliminates the need for tedious tasks such as accurate image segmentation for geometry, image registration, and estimation of boundary flow conditions. Arbitrary regions of interest can be selected for processing. This work will lead to user-friendly analysis tools that will enable quantitative hemodynamic analysis of vascular diseases in a clinical setting.
Collapse
Affiliation(s)
- Mojtaba F Fathi
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Isaac Perez-Raya
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ahmadreza Baghaie
- Dept. of Electrical and Computer Engineering, New York Institute of Technology, Long Island, NY, USA
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Gabor Janiga
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Amirhossein Arzani
- Dept. of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Roshan M D'Souza
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Perez-Raya I, Fathi MF, Baghaie A, Sacho RH, Koch KM, D'Souza RM. Towards multi-modal data fusion for super-resolution and denoising of 4D-Flow MRI. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3381. [PMID: 32627366 DOI: 10.1002/cnm.3381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
4D-Flow magnetic resonance imaging (MRI) has enabled in vivo time-resolved measurement of three-dimensional blood flow velocities in the human vascular system. However, its clinical use has been hampered by two main issues, namely, low spatio-temporal resolution and acquisition noise. While patient-specific computational fluid dynamics (CFD) simulations can address the resolution and noise issues, its fidelity is impacted by accuracy of estimation of boundary conditions, model parameters, vascular geometry, and flow model assumptions. In this paper a scheme to address limitations of both modalities through data-fusion is presented. The solutions of the patient-specific CFD simulation are characterized using proper orthogonal decomposition (POD). Next, a process of projecting the 4D-Flow MRI data onto the POD basis and projection coefficient mapping using generalized dynamic mode decomposition (DMD) enables simultaneous super-resolution and denoising of 4D-Flow MRI. The method has been tested using numerical phantoms derived from patient-specific aneurysmal geometries and applied to in vivo 4D-Flow MRI data.
Collapse
Affiliation(s)
- Isaac Perez-Raya
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Mojtaba F Fathi
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ahmadreza Baghaie
- Department of Electrical and Computer Engineering, New York Institute of Technology, Long Island, New York, USA
| | - Raphael H Sacho
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Roshan M D'Souza
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
24
|
On the spectrographic representation of cardiovascular flow instabilities. J Biomech 2020; 110:109977. [DOI: 10.1016/j.jbiomech.2020.109977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
|
25
|
Dabagh M, Nair P, Gounley J, Frakes D, Gonzalez LF, Randles A. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg Focus 2020; 47:E13. [PMID: 31261117 DOI: 10.3171/2019.4.focus19195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
The growth of cerebral aneurysms is linked to local hemodynamic conditions, but the driving mechanisms of the growth are poorly understood. The goal of this study was to examine the association between intraaneurysmal hemodynamic features and areas of aneurysm growth, to present the key hemodynamic parameters essential for an accurate prediction of the growth, and to gain a deeper understanding of the underlying mechanisms. Patient-specific images of a growing cerebral aneurysm in 3 different growth stages acquired over a period of 40 months were segmented and reconstructed. A unique aspect of this patient-specific case study was that while one side of the aneurysm stayed stable, the other side continued to grow. This unique case enabled the authors to examine their aims in the same patient with parent and daughter arteries under the same inlet flow conditions. Pulsatile flow in the aneurysm models was simulated using computational fluid dynamics and was validated with in vitro experiments using particle image velocimetry measurements. The authors' detailed analysis of intrasaccular hemodynamics linked the growing regions of aneurysms to flow instabilities and complex vortex structures. Extremely low velocities were observed at or around the center of the unstable vortex structure, which matched well with the growing regions of the studied cerebral aneurysm. Furthermore, the authors observed that the aneurysm wall regions with a growth greater than 0.5 mm coincided with wall regions of lower (< 0.5 Pa) time-averaged wall shear stress (TAWSS), lower instantaneous (< 0.5 Pa) wall shear stress (WSS), and high (> 0.1) oscillatory shear index (OSI). To determine which set of parameters can best identify growing and nongrowing aneurysms, the authors performed statistical analysis for consecutive stages of the growing CA. The results demonstrated that the combination of TAWSS and the distance from the center of the vortical structure has the highest sensitivity and positive predictive value, and relatively high specificity and negative predictive value. These findings suggest that an unstable, recirculating flow structure within the aneurysm sac created in the region adjacent to the aneurysm wall with low TAWSS may be introduced as an accurate criterion to explain the hemodynamic conditions predisposing the aneurysm to growth. The authors' findings are based on one patient's data set, but the study lays out the justification for future large-scale verification. The authors' findings can assist clinicians in differentiating stable and growing aneurysms during preinterventional planning.
Collapse
Affiliation(s)
| | - Priya Nair
- Schools of2Biological and Health Systems Engineering and
| | | | - David Frakes
- Schools of2Biological and Health Systems Engineering and.,3Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona
| | | | | |
Collapse
|
26
|
Berg P, Saalfeld S, Voß S, Beuing O, Janiga G. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 2020; 47:E15. [PMID: 31261119 DOI: 10.3171/2019.4.focus19181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Computational blood flow modeling in intracranial aneurysms (IAs) has enormous potential for the assessment of highly resolved hemodynamics and derived wall stresses. This results in an improved knowledge in important research fields, such as rupture risk assessment and treatment optimization. However, due to the requirement of assumptions and simplifications, its applicability in a clinical context remains limited.This review article focuses on the main aspects along the interdisciplinary modeling chain and highlights the circumstance that computational fluid dynamics (CFD) simulations are embedded in a multiprocess workflow. These aspects include imaging-related steps, the setup of realistic hemodynamic simulations, and the analysis of multidimensional computational results. To condense the broad knowledge, specific recommendations are provided at the end of each subsection.Overall, various individual substudies exist in the literature that have evaluated relevant technical aspects. In this regard, the importance of precise vessel segmentations for the simulation outcome is emphasized. Furthermore, the accuracy of the computational model strongly depends on the specific research question. Additionally, standardization in the context of flow analysis is required to enable an objective comparison of research findings and to avoid confusion within the medical community. Finally, uncertainty quantification and validation studies should always accompany numerical investigations.In conclusion, this review aims for an improved awareness among physicians regarding potential sources of error in hemodynamic modeling for IAs. Although CFD is a powerful methodology, it cannot provide reliable information, if pre- and postsimulation steps are inaccurately carried out. From this, future studies can be critically evaluated and real benefits can be differentiated from results that have been acquired based on technically inaccurate procedures.
Collapse
Affiliation(s)
- Philipp Berg
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Sylvia Saalfeld
- 2Research CampusSTIMULATE, and.,3Department of Simulation and Graphics, University of Magdeburg; and
| | - Samuel Voß
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Oliver Beuing
- 2Research CampusSTIMULATE, and.,4Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| |
Collapse
|
27
|
Saqr KM, Rashad S, Tupin S, Niizuma K, Hassan T, Tominaga T, Ohta M. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cereb Blood Flow Metab 2020; 40:1021-1039. [PMID: 31213162 PMCID: PMC7181089 DOI: 10.1177/0271678x19854640] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier-Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Mechanical Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tamer Hassan
- Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, Egypt
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
28
|
Bergersen AW, Kjeldsberg HA, Valen-Sendstad K. A framework for automated and objective modification of tubular structures: Application to the internal carotid artery. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3330. [PMID: 32125768 DOI: 10.1002/cnm.3330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Patient-specific medical image-based computational fluid dynamics has been widely used to reveal fundamental insight into mechanisms of cardiovascular disease, for instance, correlating morphology to adverse vascular remodeling. However, segmentation of medical images is laborious, error-prone, and a bottleneck in the development of large databases that are needed to capture the natural variability in morphology. Instead, idealized models, where morphological features are parameterized, have been used to investigate the correlation with flow features, but at the cost of limited understanding of the complexity of cardiovascular flows. To combine the advantages of both approaches, we developed a tool that preserves the patient-specificness inherent in medical images while allowing for parametric alteration of the morphology. In our open-source framework morphMan we convert the segmented surface to a Voronoi diagram, modify the diagram to change the morphological features of interest, and then convert back to a new surface. In this paper, we present algorithms for modifying bifurcation angles, location of branches, cross-sectional area, vessel curvature, shape of bends, and surface roughness. We show qualitative and quantitative validation of the algorithms, performing with an accuracy exceeding 97% in general, and proof-of-concept on combining the tool with computational fluid dynamics. By combining morphMan with appropriate clinical measurements, one could explore the morphological parameter space and resulting hemodynamic response using only a handful of segmented surfaces, effectively minimizing the main bottleneck in image-based computational fluid dynamics.
Collapse
Affiliation(s)
- Aslak W Bergersen
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| | - Henrik A Kjeldsberg
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| | - Kristian Valen-Sendstad
- Department of Computational Physiology, Simula Research Laboratory, Fornebu, Akershus, Norway
| |
Collapse
|
29
|
Bergersen AW, Chnafa C, Gallo D, Piccinelli M, Steinman DA, Valen-Sendstad K. Automated and objective removal of bifurcation aneurysms: Incremental improvements, and validation against healthy controls. J Biomech 2019; 96:109342. [PMID: 31630772 DOI: 10.1016/j.jbiomech.2019.109342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022]
Abstract
Abnormal hemodynamic stresses are thought to correlate with aneurysm initiation, growth, and rupture. We have previously investigated the role of wall shear stress (WSS) and WSS gradients (WSSG) in search for a mechanistic link to formation of sidewall aneurysms using an automated and objective tool for aneurysm removal and arterial reconstruction in combination with computational fluid dynamics (CFD). However, we warned against the use of the tool for bifurcation type aneurysms because of a potential unrealistic reconstruction of the apex. We hypothesized that inclusion of additional morphological features from the surrounding vasculature could overcome these constraints. We extended the previously published method for removal and reconstruction of the bifurcation vasculature based on diverging and converging points of the parent and daughter artery centerlines, to also include two new centerlines between the daughter vessels, one of them passed through the bifurcation center. Validation was performed by comparing the efficacy of the two algorithms, using ten healthy models of the internal carotid artery terminus as ground truth. Qualitative results showed that the bifurcation apexes became smoother relative to the original algorithm; more consistent with the reference models. This was reflected quantitatively by a reduced maximum distance between the reference and reconstructed surfaces, although not statistically significant. Furthermore, the modified algorithm also quantitatively improved CFD derived WSS and WSSG, especially the latter. In conclusion, the modified algorithm does not perfectly reconstruct the bifurcation apex, but provides an incremental improvement, especially important for the derived hemodynamic metrics of interest in vascular pathobiology.
Collapse
Affiliation(s)
- Aslak W Bergersen
- Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway
| | - Christophe Chnafa
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University, GA, USA
| | - David A Steinman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
30
|
Sunderland K, Jiang J. Multivariate analysis of hemodynamic parameters on intracranial aneurysm initiation of the internal carotid artery. Med Eng Phys 2019; 74:129-136. [PMID: 31548156 DOI: 10.1016/j.medengphy.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/30/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
Although fluctuating hemodynamic wall stressors are known to impact intracranial aneurysms (IA) initiation, specificity of those stressors has not been evaluated. In this study, using human IA data, we investigated: (1) specificity of stressors in regions with and without IA eventual IA formation; and (2) how combinations of multiple stressors could improve IA formation prediction. 3D computational vasculatures were constructed based on angiographic images of 18 subjects having multiple closely-spaced IAs in the internal carotid artery. Two models were created: Model A with all IAs computationally removed, Model B which kept keep one IA. Computational fluid dynamics (CFD) simulated flow within models. Based on simulated flow fields, wall shear stress and its gradient (WSS, WSSG), oscillatory shear index (OSI), gradient oscillatory number (GON), aneurysm formation index (AFI), and mean number of swirling flow vortices (MV) were analysed. Multivariate logistic regression determined the accuracy of different combinations of those above-mentioned stressors. Overall, we found that combining hemodynamic stressors improves IA formation prediction over individual indices. Both Model A and Model B's parsimonious model was MV+WSS+GON: AUROC 0.88 and 0.83, respectively. Future studies are planned to understand biological meanings induced by fluctuating stressors.
Collapse
Affiliation(s)
- K Sunderland
- Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.
| | - J Jiang
- Michigan Technological University, 1400 Townsend Drive, Houghton, MI, USA.
| |
Collapse
|
31
|
Natarajan T, MacDonald DE, Najafi M, Coppin PW, Steinman DA. Spectral decomposition and illustration-inspired visualisation of highly disturbed cerebrovascular blood flow dynamics. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2019. [DOI: 10.1080/21681163.2019.1647461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Thangam Natarajan
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| | | | - Mehdi Najafi
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| | - Peter W. Coppin
- Perceptual Artifacts Laboratory, Ontario College of Art and Design University, Toronto, Canada
| | - David A. Steinman
- Biomedical Simulation laboratory, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Detecting carotid stenosis from skin vibrations using Laser Doppler Vibrometry - An in vitro proof-of-concept. PLoS One 2019; 14:e0218317. [PMID: 31220141 PMCID: PMC6586301 DOI: 10.1371/journal.pone.0218317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/31/2019] [Indexed: 02/02/2023] Open
Abstract
Early detection of asymptomatic carotid stenosis may help identifying individuals at risk of stroke. We explore a new method based on laser Doppler vibrometry (LDV) which could allow the non-contact detection of stenosis from neck skin vibrations due to stenosis-induced flow disturbances. Experimental fluid dynamical tests were performed with water on a severely stenosed patient-specific carotid bifurcation model. Measurements were taken under various physiological flow regimes both in a compliant and stiff-walled version of the model, at 1 to 4 diameters downstream from the stenosis. An inter-arterial pressure catheter was positioned as reference. Increasing flow led to corresponding increase in power spectral density (PSD) of pressure and LDV recordings in the 0-500 Hz range. The stiff model lead to higher PSD. PSD of the LDV signal was less dependent on the downstream measurement location than pressure. The strength of the association between PSD and flow level, model material and measuring location was highest in the 0-50 Hz range, however useful information was found up to 200 Hz. This proof-of-concept suggests that LDV has the potential to detect stenosis-induced disturbed flow. Further computational and clinical validation studies are ongoing to assess the sensitivity and specificity of the technique for clinical screening.
Collapse
|
33
|
Berg P, Voß S, Janiga G, Saalfeld S, Bergersen AW, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Chiu TL, Tsang ACO, Copelli G, Csippa B, Paál G, Závodszky G, Detmer FJ, Chung BJ, Cebral JR, Fujimura S, Takao H, Karmonik C, Elias S, Cancelliere NM, Najafi M, Steinman DA, Pereira VM, Piskin S, Finol EA, Pravdivtseva M, Velvaluri P, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Venguru S, Shojima M, Sindeev S, Frolov S, Qian Y, Wu YA, Carlson KD, Kallmes DF, Dragomir-Daescu D, Beuing O. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-phase II: rupture risk assessment. Int J Comput Assist Radiol Surg 2019; 14:1795-1804. [PMID: 31054128 DOI: 10.1007/s11548-019-01986-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited. METHODS To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear stress as the most popular candidates, respectively. RESULTS The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the participating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm as the second most probable. Successful selections were based on the integration of clinically relevant information such as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions. CONCLUSIONS MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata with advanced morphological and hemodynamic quantification.
Collapse
Affiliation(s)
| | - Samuel Voß
- University of Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | - Benjamin Csippa
- Budapest University of Technology and Economics, Budapest, Hungary
| | - György Paál
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Závodszky
- Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | | | | | | | - Saba Elias
- Houston Methodist Research Institute, Houston, TX, USA
| | | | | | | | | | - Senol Piskin
- The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ender A Finol
- The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | - Hui Meng
- State University of New York, Buffalo, NY, USA
| | | | | | | | | | | | - Yi Qian
- Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
34
|
High-Frequency Fluctuations in Post-stenotic Patient Specific Carotid Stenosis Fluid Dynamics: A Computational Fluid Dynamics Strategy Study. Cardiovasc Eng Technol 2019; 10:277-298. [PMID: 30937853 PMCID: PMC6527791 DOI: 10.1007/s13239-019-00410-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Purpose Screening of asymptomatic carotid stenoses is performed by auscultation of the carotid bruit, but the sensitivity is poor. Instead, it has been suggested to detect carotid bruit as neck’s skin vibrations. We here take a first step towards a computational fluid dynamics proof-of-concept study, and investigate the robustness of our numerical approach for capturing high-frequent fluctuations in the post-stenotic flow. The aim was to find an ideal solution strategy from a pragmatic point of view, balancing accuracy with computational cost comparing an under-resolved direct numerical simulation (DNS) approach vs. three common large eddy simulation (LES) models (static/dynamic Smagorinsky and Sigma). Method We found a reference solution by performing a spatial and temporal refinement study of a stenosed carotid bifurcation with constant flow rate. The reference solution \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {\Delta x = 1.92 \times 10^{ - 4} \;{\text{m}},\; \Delta t = 5 \times 10^{ - 5} \;{\text{s}}} \right)$$\end{document}Δx=1.92×10-4m,Δt=5×10-5s was compared against LES for both a constant and pulsatile flow. Results Only the Sigma and Dynamic Smagorinsky models were able to replicate the flow field of the reference solution for a pulsatile simulation, however the computational cost of the Sigma model was lower. However, none of the sub-grid scale models were able to replicate the high-frequent flow in the peak-systolic constant flow rate simulations, which had a higher mean Reynolds number. Conclusions The Sigma model was the best combination between accuracy and cost for simulating the pulsatile post-stenotic flow field, whereas for the constant flow rate, the under-resolved DNS approach was better. These results can be used as a reference for future studies investigating high-frequent flow features.
Collapse
|
35
|
Schönfeld MH, Forkert ND, Fiehler J, Cho YD, Han MH, Kang HS, Peach TW, Byrne JV. Hemodynamic Differences Between Recurrent and Nonrecurrent Intracranial Aneurysms: Fluid Dynamics Simulations Based on MR Angiography. J Neuroimaging 2019; 29:447-453. [PMID: 30891876 DOI: 10.1111/jon.12612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the role of wall shear stress (WSS) in the initiation, growth, and rupture of intracranial aneurysms has been well studied, its influence on aneurysm recurrence after endovascular treatment requires further investigation. We aimed to compare WSS at necks of recurrent and nonrecurrent aneurysms. METHODS Nine recurrent coil-embolized aneurysms were identified and matched with nine nonrecurrent aneurysms. Patient-specific vessel geometries reconstructed from follow-up 3-D time-of-flight magnetic resonance angiography were analyzed using computational fluid dynamics (CFD) simulations. Absolute WSS and the percentage of abnormally low and high WSS at the aneurysm neck compared to the near artery were measured. RESULTS The median percentage of abnormal WSS at the aneurysm neck was 49.3% for recurrent and 34.7% for nonrecurrent aneurysms (P = .011). The area under the receiver-operating-characteristic curve for distinguishing these aneurysms according to the percentage of abnormal WSS was .86 (95% CI .62 to .98). The optimal cut-off value of 45.1% resulted in a sensitivity and a specificity of 88.89% (95% CI 51.8% to 99.7%). CONCLUSION Our findings indicate that necks of recurrent aneurysms are exposed to abnormal WSS to a larger extent. Abnormal WSS may serve as a metric to distinguish them from nonrecurrent aneurysms with CFD simulations a priori.
Collapse
Affiliation(s)
- Michael Hinrich Schönfeld
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils Daniel Forkert
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Young Dae Cho
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon Hee Han
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Thomas William Peach
- Department of Mechanical Engineering, University College London, London, UK.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - James Vincent Byrne
- Oxford Neurovascular & Neuroradiology Research Unit, Oxford Radcliffe Hospital, Oxford, UK
| |
Collapse
|
36
|
Asgharzadeh H, Asadi H, Meng H, Borazjani I. A non-dimensional parameter for classification of the flow in intracranial aneurysms. II. Patient-specific geometries. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2019; 31:031905. [PMID: 30967745 PMCID: PMC6436177 DOI: 10.1063/1.5081451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 05/21/2023]
Abstract
A simple parameter, called the Aneurysm number (An) which is defined as the ratio of transport to vortex time scales, has been shown to classify the flow mode in simplified aneurysm geometries. Our objective is to test the hypothesis that An can classify the flow in patient-specific intracranial aneurysms (IA). Therefore, the definition of this parameter is extended to anatomic geometries by using hydraulic diameter and the length of expansion area in the approximate direction of the flow. The hypothesis is tested using image-based flow simulations in five sidewall and four bifurcation geometries, i.e., if An ≲ 1 (shorter transport time scale), then the fluid is transported across the neck before the vortex could be formed, creating a quasi-stationary shear layer (cavity mode). By contrast, if An ≳ 1 (shorter vortex time scale), a vortex is formed. The results show that if An switches from An ≲ 1 to An ≳ 1, then the flow mode switches from the cavity mode to the vortex mode. However, if An does not switch, then the IAs stay in the same mode. It is also shown that IAs in the cavity mode have significantly lower An, temporal fluctuations of wall shear stress and oscillatory shear index (OSI) compared to the vortex mode (p < 0.01). In addition, OSI correlates with An in each flow mode and with pulsatility index in each IA. This suggests An to be a viable hemodynamic parameter which can be easily calculated without the need for detailed flow measurements/ simulations.
Collapse
Affiliation(s)
- Hafez Asgharzadeh
- Department of Mechanical and Aerospace
Engineering, University at Buffalo, The State University of New York,
Buffalo, New York 14260, USA
| | - Hossein Asadi
- J. Mike Walker ’66 Department of Mechanical
Engineering, Texas A&M University, College Station, Texas 77843,
USA
| | - Hui Meng
- Department of Mechanical and Aerospace
Engineering, University at Buffalo, The State University of New York,
Buffalo, New York 14260, USA
| | | |
Collapse
|
37
|
Characterization and estimation of turbulence-related wall shear stress in patient-specific pulsatile blood flow. J Biomech 2019; 85:108-117. [PMID: 30704762 DOI: 10.1016/j.jbiomech.2019.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/26/2018] [Accepted: 01/08/2019] [Indexed: 11/22/2022]
Abstract
Disturbed, turbulent-like blood flow promotes chaotic wall shear stress (WSS) environments, impairing essential endothelial functions and increasing the susceptibility and progression of vascular diseases. These flow characteristics are today frequently detected at various anatomical, lesion and intervention-related sites, while their role as a pathological determinant is less understood. To present-day, numerous WSS-based descriptors have been proposed to characterize the spatiotemporal nature of the WSS disturbances, however, without differentiation between physiological laminar oscillations and turbulence-related WSS (tWSS) fluctuations. Also, much attention has been focused on magnetic resonance (MR) WSS estimations, so far with limited success; promoting the need of a near-wall surrogate marker. In this study, a new approach is explored to characterize the tWSS, by taking advantage of the tensor characteristics of the fluctuating WSS correlations, providing both a magnitude and an anisotropy measure of the disturbances. These parameters were studied in two patient-specific coarctation models (sever and mild), using large eddy simulations, and correlated against near-wall reciprocal Reynolds stress parameters. Collectively, results showed distinct regions of differing tWSS characteristics, features which were sensitive to changes in flow conditions. Generally, the post-stenotic tWSS was governed by near axisymmetric fluctuations, findings that where not consistent with conventional WSS disturbance predictors. At the 2-3 mm wall-offset range, a strong linear correlation was found between tWSS magnitude and near-wall turbulence kinetic energy (TKE), in contrast to the anisotropy indices, suggesting that MR-measured TKE can be used to assess elevated tWSS regions while tWSS anisotropy estimates request well-resolved simulation methods.
Collapse
|
38
|
Bergersen AW, Mortensen M, Valen-Sendstad K. The FDA nozzle benchmark: "In theory there is no difference between theory and practice, but in practice there is". INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3150. [PMID: 30211982 DOI: 10.1002/cnm.3150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
The utility of flow simulations relies on the robustness of computational fluid dynamics (CFD) solvers and reproducibility of results. The aim of this study was to validate the Oasis CFD solver against in vitro experimental measurements of jet breakdown location from the FDA nozzle benchmark at Reynolds number 3500, which is in the particularly challenging transitional regime. Simulations were performed on meshes consisting of 5, 10, 17, and 28 million (M) tetrahedra, with Δt = 10-5 seconds. The 5M and 10M simulation jets broke down in reasonable agreement with the experiments. However, the 17M and 28M simulation jets broke down further downstream. But which of our simulations are "correct"? From a theoretical point of view, they are all wrong because the jet should not break down in the absence of disturbances. The geometry is axisymmetric with no geometrical features that can generate angular velocities. A stable flow was supported by linear stability analysis. From a physical point of view, a finite amount of "noise" will always be present in experiments, which lowers transition point. To replicate noise numerically, we prescribed minor random angular velocities (approximately 0.31%), much smaller than the reported flow asymmetry (approximately 3%) and model accuracy (approximately 1%), at the inlet of the 17M simulation, which shifted the jet breakdown location closer to the measurements. Hence, the high-resolution simulations and "noise" experiment can potentially explain discrepancies in transition between sometimes "sterile" CFD and inherently noisy "ground truth" experiments. Thus, we have shown that numerical simulations can agree with experiments, but for the wrong reasons.
Collapse
Affiliation(s)
- Aslak W Bergersen
- Department of Computational Physiology, Simula Research Laboratory AS, Fornebu, Norway
| | - Mikael Mortensen
- Department of Mathematics, University of Oslo Mathematics and Natural Sciences, Oslo, Norway
| | | |
Collapse
|
39
|
A new hypothesis on the role of vessel topology in cerebral aneurysm initiation. Comput Biol Med 2018; 103:244-251. [PMID: 30391796 DOI: 10.1016/j.compbiomed.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/17/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023]
Abstract
Aneurysm pathogenesis is thought to be strongly linked with hemodynamical effects. According to our current knowledge, the formation process is initiated by locally disturbed flow conditions. The aim of the current work is to provide a numerical investigation on the role of the flow field at the stage of the initiation, before the aneurysm formation. Digitally reconstructed pre-aneurysmal geometries are used to examine correlations of the flow patterns to the location and direction of the aneurysms formed later. We argue that a very specific rotational flow pattern is present in all the investigated cases marking the location of the later aneurysm and that these flow patterns provide the mechanical load on the wall that can lead to a destructive remodelling in the vessel wall. Furthermore, these patterns induce elevated vessel surface related variables (e.g. wall shear stress (WSS), wall shear stress gradient (WSSG) and oscillatory shear index (OSI)), in agreement with the previous findings. We emphasise that the analysis of the flow patterns provides a deeper insight and a more robust numerical methodology compared to the sole examination of the aforementioned surface quantities.
Collapse
|
40
|
Hodis S. Correlation of flow complexity parameter with aneurysm rupture status. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3131. [PMID: 30021249 DOI: 10.1002/cnm.3131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/07/2018] [Indexed: 05/22/2023]
Abstract
Ruptured aneurysms are known to have complex flow patterns and concentrated inflow jet, but a quantifiable measure for the degree of flow complexity in patient-specific geometries has not been established. Previously, we proposed a flow complexity parameter that provides a quantitative description of the complexity of flow patterns through calculated curvature and torsion of the flow field. The purpose of the current study was to provide an analytic solution of the flow complexity parameter and assess a possible correlation with the rupture status of cerebral aneurysms by analyzing the parameter on five ruptured and five unruptured aneurysms from anterior communicating artery. We analyzed the flow complexity parameter in jet and non-jet regions in order to measure the concentration of the jet flow and the complexity of the non-jet flow. We found that on average, in a ruptured case the jet region is significantly less complex (4.5 times) than the jet region in an unruptured case, while the non-jet region is significantly more complex (3.5 times) than the non-jet region in an unruptured case. We also found a strong positive correlation of the non-jet complexity with dome volume in ruptured cases, but no correlation of jet complexity with dome volume. These findings suggest that a ruptured aneurysm has more than 4 times more concentrated inflow jet and more than 3 times more complex flow patterns in non-jet region than an unruptured aneurysm. This newly implemented kinematic parameter provides a measurable degree of complexity of flow patterns in cerebral aneurysms that can better assess aneurysm rupture risk.
Collapse
Affiliation(s)
- Simona Hodis
- Department of Mathematics, Texas A&M University-Kingsville, Kingsville, Texas
| |
Collapse
|
41
|
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Cardiovasc Eng Technol 2018; 9:623-640. [DOI: 10.1007/s13239-018-00378-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
|
42
|
Botti L, Paliwal N, Conti P, Antiga L, Meng H. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3111. [PMID: 29858530 PMCID: PMC6378953 DOI: 10.1002/cnm.3111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Image-based computational fluid dynamics (CFD) has shown potential to aid in the clinical management of intracranial aneurysms, but its adoption in the clinical practice has been missing, partially because of lack of accuracy assessment and sensitivity analysis. To numerically solve the flow-governing equations, CFD solvers generally rely on 2 spatial discretization schemes: finite volume (FV) and finite element (FE). Since increasingly accurate numerical solutions are obtained by different means, accuracies and computational costs of FV and FE formulations cannot be compared directly. To this end, in this study, we benchmark 2 representative CFD solvers in simulating flow in a patient-specific intracranial aneurysm model: (1) ANSYS Fluent, a commercial FV-based solver, and (2) VMTKLab multidGetto, a discontinuous Galerkin (dG) FE-based solver. The FV solver's accuracy is improved by increasing the spatial mesh resolution (134k, 1.1m, 8.6m, and 68.5m tetrahedral element meshes). The dGFE solver accuracy is increased by increasing the degree of polynomials (first, second, third, and fourth degree) on the base 134k tetrahedral element mesh. Solutions from best FV and dGFE approximations are used as baseline for error quantification. On average, velocity errors for second-best approximations are approximately 1 cm/s for a [0,125] cm/s velocity magnitude field. Results show that high-order dGFE provides better accuracy per degree of freedom but worse accuracy per Jacobian nonzero entry as compared with FV. Cross-comparison of velocity errors demonstrates asymptotic convergence of both solvers to the same numerical solution. Nevertheless, the discrepancy between underresolved velocity fields suggests that mesh independence is reached following different paths.
Collapse
Affiliation(s)
- Lorenzo Botti
- Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
| | - Nikhil Paliwal
- Toshiba Stroke and Vascular Research Center, University of Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Pierangelo Conti
- Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
| | | | - Hui Meng
- Toshiba Stroke and Vascular Research Center, University of Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
- Department of Mechanical and Aerospace Engineering, University of Buffalo, Buffalo, NY, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
43
|
Li H, Papageorgiou DP, Chang HY, Lu L, Yang J, Deng Y. Synergistic Integration of Laboratory and Numerical Approaches in Studies of the Biomechanics of Diseased Red Blood Cells. BIOSENSORS 2018; 8:E76. [PMID: 30103419 PMCID: PMC6164935 DOI: 10.3390/bios8030076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
In red blood cell (RBC) disorders, such as sickle cell disease, hereditary spherocytosis, and diabetes, alterations to the size and shape of RBCs due to either mutations of RBC proteins or changes to the extracellular environment, lead to compromised cell deformability, impaired cell stability, and increased propensity to aggregate. Numerous laboratory approaches have been implemented to elucidate the pathogenesis of RBC disorders. Concurrently, computational RBC models have been developed to simulate the dynamics of RBCs under physiological and pathological conditions. In this work, we review recent laboratory and computational studies of disordered RBCs. Distinguished from previous reviews, we emphasize how experimental techniques and computational modeling can be synergically integrated to improve the understanding of the pathophysiology of hematological disorders.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Jun Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
- School of Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
44
|
Xu L, Liang F, Zhao B, Wan J, Liu H. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study. Comput Biol Med 2018; 101:51-60. [PMID: 30099239 DOI: 10.1016/j.compbiomed.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/10/2023]
Abstract
The variation of blood flow waveform in the internal carotid artery (ICA) with age is a well-documented hemodynamic phenomenon, but little is known about how such variation affects the characteristics of blood flow in aneurysms present in the region. In the study, hemodynamic simulations were conducted for 26 ICA aneurysms, with flow waveforms measured in the ICAs of young and older adults being used respectively to set the inflow boundary conditions. Obtained results showed that replacing the young-adult flow waveform with the older-adult one led to little changes (<10%) in simulated time-averaged wall shear stress (WSS), transient maximum WSS, relative residence time and trans-aneurysm pressure loss coefficient, but resulted in a marked increase (32.36 ± 17.24%) in oscillatory shear index (OSI). Frequency-domain wave analysis revealed that the progressive enhancement of low-frequency harmonics dominated the observed flow waveform variation with age and was a major factor contributing to the increase in OSI. Cross-sectional comparisons among the aneurysms further revealed that the degree of increase in OSI correlated positively with some specific morphological features of aneurysm, such as aspect ratio and size ratio. In summary, the study demonstrates that the variation in flow waveform with age augments the oscillation of WSS in ICA aneurysms, which underlies the importance of setting patient-specific boundary conditions in hemodynamic studies on cerebral aneurysms, especially those involving long-term patient follow-up or cross-sectional comparison among patients of different ages.
Collapse
Affiliation(s)
- Lijian Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fuyou Liang
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Sechenov University, Moscow, 119991, Russia.
| | - Bing Zhao
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jieqing Wan
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Liu
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 2638522, Japan
| |
Collapse
|
45
|
Madhavan S, Kemmerling EMC. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow. Biomed Eng Online 2018; 17:66. [PMID: 29843730 PMCID: PMC5975715 DOI: 10.1186/s12938-018-0497-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Computational modeling of cardiovascular flow is a growing and useful field, but such simulations usually require the researcher to guess the flow’s inlet and outlet conditions since they are difficult and expensive to measure. It is critical to determine the amount of uncertainty introduced by these assumptions in order to evaluate the degree to which cardiovascular flow simulations are accurate. Our work begins to address this question by examining the sensitivity of flow to several different assumed velocity inlet and outlet conditions in a patient-specific aorta model. Methods We examined the differences between plug flow, parabolic flow, linear shear flows, skewed cubic flow profiles, and Womersley flow at the inlet. Only the shape of the inlet velocity profile was varied—all other parameters were identical among these simulations. Secondary flow in the form of a counter-rotating pair of vortices was also added to parabolic axial flow to study its effect on the solution. In addition, we examined the differences between two-element Windkessel, three element Windkessel and the outflow boundary conditions. In these simulations, only the outlet boundary condition was varied. Results The results show axial and in-plane velocities are considerably different close to the inlet for the cases with different inlet velocity profile shapes. However, the solutions are qualitatively similar beyond 1.75D, where D is the inlet diameter. This trend is also observed in other quantities such as pressure and wall shear stress. Normalized root-mean-square deviation, a measure of axial velocity magnitude differences between the different cases, generally decreases along the streamwise coordinate. The linear shear inlet velocity boundary condition and plug velocity boundary condition solution exhibit the highest time-averaged wall shear stress, approximately \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$8\%$$\end{document}8% higher than the parabolic inlet velocity boundary condition. Upstream of 1D from the inlet, adding secondary flow has a significant impact on temporal wall shear stress distributions. This is especially observable during diastole, when integrated wall shear stress magnitude varies about \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$26\%$$\end{document}26% between simulations with and without secondary flow. The results from the outlet boundary condition study show the Windkessel models differ from the outflow boundary condition by as much as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$18\%$$\end{document}18% in terms of time-averaged wall shear stress. Furthermore, normalized root-mean-square deviation of axial velocity magnitude, a measure of deviation between Windkessel and the outflow boundary condition, increases along the streamwise coordinate indicating larger variations near outlets. Conclusion It was found that the selection of inlet velocity conditions significantly affects only the flow region close to the inlet of the aorta. Beyond two diameters distal to the inlet, differences in flow solution are small. Although additional studies must be performed to verify this result, the data suggest that it is important to use patient-specific inlet conditions primarily if the researcher is concerned with the details of the flow very close to the inlet. Similarly, the selection of outlet conditions significantly affects the flow in the vicinity of the outlets. Upstream of five diameters proximal to the outlet, deviations between the outlet boundary conditions examined are insignificant. Although the inlet and outlet conditions only affect the flow significantly in their respective neighborhoods, our study indicates that outlet conditions influence a larger percentage of the solution domain.
Collapse
Affiliation(s)
- Sudharsan Madhavan
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | | |
Collapse
|
46
|
Xu L, Liang F, Gu L, Liu H. Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery. J Biomech 2018; 72:187-199. [PMID: 29602477 DOI: 10.1016/j.jbiomech.2018.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 11/30/2022]
Abstract
Flow instability has emerged as a new hemodynamic metric hypothesized to have potential value in assessing the rupture risk of cerebral aneurysms. However, diverse findings have been reported in the literature. In the present study, high-resolution hemodynamic simulations were performed retrospectively on 35 aneurysms (10 ruptured & 25 unruptured) located at the internal carotid artery (ICA). Simulated hemodynamic parameters were statistically compared between the ruptured and unruptured aneurysms, with emphasis on examining the correlation of flow instability with the status of aneurysm rupture. Pronounced flow instability was detected in 20% (2 out of 10) of the ruptured aneurysms, whereas in 44% (11 out of 25) of the unruptured aneurysms. Statistically, the flow instability metric (quantified by the temporally and spatially averaged fluctuating kinetic energy over the aneurysm sac) did not differ significantly between the ruptured and unruptured aneurysms. In contrast, low wall shear stress area (LSA) and pressure loss coefficient (PLC) exhibited significant correlations with the status of aneurysm rupture. In conclusion, the present study suggests that the presence of flow instability may not correlate closely with the status of aneurysm rupture, at least for ICA aneurysms. On the other hand, the retrospective nature of the study and the small sample size may have to some extent compromised the reliability of the conclusion, and therefore large-scale prospective studies would be needed to further address the issue.
Collapse
Affiliation(s)
- Lijian Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fuyou Liang
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Lixu Gu
- Shanghai Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Liu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Jiao Tong University and Chiba University International Cooperative Research Centre (SJTU-CU ICRC), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 2638522, Japan.
| |
Collapse
|
47
|
Chnafa C, Brina O, Pereira VM, Steinman DA. Better Than Nothing: A Rational Approach for Minimizing the Impact of Outflow Strategy on Cerebrovascular Simulations. AJNR Am J Neuroradiol 2018; 39:337-343. [PMID: 29269407 DOI: 10.3174/ajnr.a5484] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/13/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Computational fluid dynamics simulations of neurovascular diseases are impacted by various modeling assumptions and uncertainties, including outlet boundary conditions. Many studies of intracranial aneurysms, for example, assume zero pressure at all outlets, often the default ("do-nothing") strategy, with no physiological basis. Others divide outflow according to the outlet diameters cubed, nominally based on the more physiological Murray's law but still susceptible to subjective choices about the segmented model extent. Here we demonstrate the limitations and impact of these outflow strategies, against a novel "splitting" method introduced here. MATERIALS AND METHODS With our method, the segmented lumen is split into its constituent bifurcations, where flow divisions are estimated locally using a power law. Together these provide the global outflow rate boundary conditions. The impact of outflow strategy on flow rates was tested for 70 cases of MCA aneurysm with 0D simulations. The impact on hemodynamic indices used for rupture status assessment was tested for 10 cases with 3D simulations. RESULTS Differences in flow rates among the various strategies were up to 70%, with a non-negligible impact on average and oscillatory wall shear stresses in some cases. Murray-law and splitting methods gave flow rates closest to physiological values reported in the literature; however, only the splitting method was insensitive to arbitrary truncation of the model extent. CONCLUSIONS Cerebrovascular simulations can depend strongly on the outflow strategy. The default zero-pressure method should be avoided in favor of Murray-law or splitting methods, the latter being released as an open-source tool to encourage the standardization of outflow strategies.
Collapse
Affiliation(s)
- C Chnafa
- From the Biomedical Simulation Laboratory (C.C., D.A.S.), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - O Brina
- Joint Division of Medical Imaging (O.B., V.M.P.), Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - V M Pereira
- Joint Division of Medical Imaging (O.B., V.M.P.), Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - D A Steinman
- From the Biomedical Simulation Laboratory (C.C., D.A.S.), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
|
49
|
Biswas D, Casey DM, Crowder DC, Steinman DA, Yun YH, Loth F. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions. J Biomech Eng 2017; 138:2517983. [PMID: 27109010 DOI: 10.1115/1.4033474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/08/2022]
Abstract
Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s-1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s-1 is significantly larger than at SR = 1000 s-1 (13.8%, p < 0.001). Doppler ultrasound (DUS) was used to measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s-1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re < 2200. However, differences were observed between blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806 ± 109. Overall, the critical Re was delayed by ∼20% (p < 0.001) for blood compared to the Newtonian fluid. Thus, a Newtonian assumption for blood at flow conditions near transition could lead to large errors in velocity prediction for steady flow in a straight pipe. However, these results are specific to this pipe diameter and not generalizable since SR is highly dependent on pipe diameter. Further research is necessary to understand this relation in different pipe sizes, more complex geometries, and under pulsatile flow conditions.
Collapse
|
50
|
Four-Dimensional Phase Contrast Magnetic Resonance Imaging Protocol Optimization Using Patient-Specific 3-Dimensional Printed Replicas for In Vivo Imaging Before and After Flow Diverter Placement. World Neurosurg 2017. [DOI: 10.1016/j.wneu.2017.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|