1
|
Nazari AR. Simulation of cancer progression in bone by a virtual thermal flux with a case study on lumbar vertebrae with multiple myeloma. Med Eng Phys 2024; 126:104147. [PMID: 38621839 DOI: 10.1016/j.medengphy.2024.104147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Two main problems examining the mechanism of cancer progression in the tissues using the computational models are lack of enough knowledge on the effective factors for such events in vivo environments and lack of specific parameters in the available computational models to simulate such complicated reactions. METHODS In this study, it was tried to simulate the progression of cancerous lesions in the bone tissues by an independent parameter from the anatomical and physiological characteristics of the tissues, so to degrade the orthotropic mechanical properties of the bone tissues, a virtual temperature was determined to be used by a well-known framework for simulation of damages in the composite materials. First, the reliability of the FE model to simulate hyperelastic response in the intervertebral discs (IVDs) and progressive failure in the bony components were verified by simulation of some In-Vitro tests, available in the literature. Then, the progression of the osteolytic damage was simulated in a clinical case with multiple myeloma in the lumbar vertebrae. RESULTS The FE model could simulate stress-shielding and diffusion of lesion in the posterior elements of the damaged vertebra which led to spinal stenosis. The load carrying shares associated with the anterior half and the posterior half of the examined vertebral body and the posterior elements were estimated equal to 41 %, 47 % and 12 %, respectively for the intact condition, that changed to 14 %, 16 % and 70 %, when lesion occupied one third of the vertebral body. CONCLUSION Correlation of the FE results with the deformation shapes, observed in the MRIs for the clinical case study, indicated appropriateness of the procedure, proposed for simulation of the progressive osteolytic damage in the vertebral segments. The future studies may follow simulation of tumor growth for various metastatic tissues using the method, established here.
Collapse
Affiliation(s)
- A R Nazari
- Department of Civil Engineering, Technical & Vocational University, Tehran, Iran; Biomechanics Research Lab, Technical & Vocational University, Tehran, Iran.
| |
Collapse
|
2
|
Davies B, Schaefer S, Rafati Fard A, Newcombe V, Sutcliffe M. Finite Element Analysis for Degenerative Cervical Myelopathy: Scoping Review of the Current Findings and Design Approaches, Including Recommendations on the Choice of Material Properties. JMIR BIOMEDICAL ENGINEERING 2024; 9:e48146. [PMID: 38875683 PMCID: PMC11041437 DOI: 10.2196/48146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material properties). OBJECTIVE This scoping review aims to undertake a structured process to select the most appropriate material properties for use in DCM FEA. In doing so, it also provides an overview of existing modeling approaches in spinal cord disease and clinical insights into DCM. METHODS We conducted a scoping review using qualitative synthesis. Observational studies that discussed the use of FEA models involving the spinal cord in either health or disease (including DCM) were eligible for inclusion in the review. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The MEDLINE and Embase databases were searched to September 1, 2021. This was supplemented with citation searching to retrieve the literature used to define material properties. Duplicate title and abstract screening and data extraction were performed. The quality of evidence was appraised using the quality assessment tool we developed, adapted from the Newcastle-Ottawa Scale, and shortlisted with respect to DCM material properties, with a final recommendation provided. A qualitative synthesis of the literature is presented according to the Synthesis Without Meta-Analysis reporting guidelines. RESULTS A total of 60 papers were included: 41 (68%) "FEA articles" and 19 (32%) "source articles." Most FEA articles (33/41, 80%) modeled the gray matter and white matter separately, with models typically based on tabulated data or, less frequently, a hyperelastic Ogden variant or linear elastic function. Of the 19 source articles, 14 (74%) were identified as describing the material properties of the spinal cord, of which 3 (21%) were considered most relevant to DCM. Of the 41 FEA articles, 15 (37%) focused on DCM, of which 9 (60%) focused on ossification of the posterior longitudinal ligament. Our aggregated results of DCM FEA indicate that spinal cord loading is influenced by the pattern of degenerative changes, with decompression alone (eg, laminectomy) sufficient to address this as opposed to decompression combined with other procedures (eg, laminectomy and fusion). CONCLUSIONS FEA is a promising technique for exploring the pathobiology of DCM and informing clinical care. This review describes a structured approach to help future investigators deploy FEA for DCM. However, there are limitations to these recommendations and wider uncertainties. It is likely that these will need to be overcome to support the clinical translation of FEA to DCM.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Schaefer
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Virginia Newcombe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Sutcliffe
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Singhal I, Harinathan B, Warraich A, Purushothaman Y, Budde MD, Yoganandan N, Vedantam A. Finite element modeling of the human cervical spinal cord and its applications: A systematic review. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100246. [PMID: 37636342 PMCID: PMC10448221 DOI: 10.1016/j.xnsj.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/29/2023]
Abstract
Background Context Finite element modeling (FEM) is an established tool to analyze the biomechanics of complex systems. Advances in computational techniques have led to the increasing use of spinal cord FEMs to study cervical spinal cord pathology. There is considerable variability in the creation of cervical spinal cord FEMs and to date there has been no systematic review of the technique. The aim of this study was to review the uses, techniques, limitations, and applications of FEMs of the human cervical spinal cord. Methods A literature search was performed through PubMed and Scopus using the words finite element analysis, spinal cord, and biomechanics. Studies were selected based on the following inclusion criteria: (1) use of human spinal cord modeling at the cervical level; (2) model the cervical spinal cord with or without the osteoligamentous spine; and (3) the study should describe an application of the spinal cord FEM. Results Our search resulted in 369 total publications, 49 underwent reviews of the abstract and full text, and 23 were included in the study. Spinal cord FEMs are used to study spinal cord injury and trauma, pathologic processes, and spine surgery. Considerable variation exists in the derivation of spinal cord geometries, mathematical models, and material properties. Less than 50% of the FEMs incorporate the dura mater, cerebrospinal fluid, nerve roots, and denticulate ligaments. Von Mises stress, and strain of the spinal cord are the most common outputs studied. FEM offers the opportunity for dynamic simulation, but this has been used in only four studies. Conclusions Spinal cord FEM provides unique insight into the stress and strain of the cervical spinal cord in various pathological conditions and allows for the simulation of surgical procedures. Standardization of modeling parameters, anatomical structures and inclusion of patient-specific data are necessary to improve the clinical translation.
Collapse
Affiliation(s)
- Ishan Singhal
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| | - Balaji Harinathan
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| | - Ali Warraich
- University of Chicago, 1413 East 57 St, Chicago, IL 60637, United States
| | - Yuvaraj Purushothaman
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, United States
| |
Collapse
|
4
|
Effect of degenerative factors on cervical spinal cord during flexion and extension: a dynamic finite element analysis. Biomech Model Mechanobiol 2022; 21:1743-1759. [PMID: 35931861 DOI: 10.1007/s10237-022-01617-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Spinal cord injury (SCI) is a global problem that brings a heavy burden to both patients and society. Recent investigations indicated degenerative disease is taking an increasing part in SCI with the growth of the aging population. However, little insight has been gained about the effect of cervical degenerative disease on the spinal cord during dynamic activities. In this work, a dynamic fluid-structure interaction model was developed and validated to investigate the effect of anterior and posterior encroachment caused by degenerative disease on the spinal cord during normal extension and flexion. Maximum von-Mises stress and maximum principal strain were observed at the end of extension and flexion. The abnormal stress distribution caused by degenerative factors was concentrated in the descending tracts of the spinal cord. Our finding indicates that the excessive motion of the cervical spine could potentially exacerbate spinal cord injury and enlarge injury areas. Stress and strain remained low compared to extension during moderate flexion. This suggests that patients with cervical degenerative disease should avoid frequent or excessive flexion and extension which could result in motor function impairment, whereas moderate flexion is safe. Besides, encroachment caused by degenerative factors that are not significant in static imaging could also cause cord compression during normal activities.
Collapse
|
5
|
Rycman A, McLachlin S, Cronin DS. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3570. [PMID: 34997836 DOI: 10.1002/cnm.3570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid-structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid-structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid-structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian-Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over-predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian-Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid-structure interaction during transverse impact.
Collapse
Affiliation(s)
- Aleksander Rycman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Stewart McLachlin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Duane S Cronin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Arhiptsov K, Marom G. Numerical Models of Spinal Cord Trauma: The Effect of Cerebrospinal Fluid Pressure and Epidural Fat on the Results. J Neurotrauma 2021; 38:2176-2185. [PMID: 33971729 DOI: 10.1089/neu.2021.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury (SCI) is commonly caused by traumatic mechanical damage. Although numerical models can help predict the mechanics of SCI without putting the subjects in danger, previous studies did not focus on alternations in cerebrospinal fluid (CSF) pressure and did not account for the presence of epidural fat. This study aims to numerically compare the mechanical behavior of the human spine when subjected to contusion and burst fracture with varying CSF pressure, either normal or elevated pressure that represents intracranial hypertension. An additional aim is to find out how the presence of the fat in the model affects the SCI calculations. CSF and epidural fat were modeled as smoothed-particle hydrodynamics (SPH) and the soft tissues were modeled as hyperelastic. This approach made it possible to account for CSF pressure alteration and its effect on the cord. Validation models resulted in good correlation with previous numerical and experimental studies. The results were able to capture the fluid dynamics of the CSF while demonstrating a considerable change in the stresses of the spinal cord. The comparison of the CSF pressures demonstrated that SCI in patients with elevated pressure and in regions where insufficient epidural fat exists might lead to higher spinal cord stresses. Yet, in regions with enough fat, the fat can absorb energy and counteract the effect of the elevated pressure. These results indicate important aspects that need to be accounted for in future numerical models of SCI while also demonstrating how the injury might be aggravated by preexisting conditions.
Collapse
Affiliation(s)
| | - Gil Marom
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Sudres P, Evin M, Wagnac E, Bailly N, Diotalevi L, Melot A, Arnoux PJ, Petit Y. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges. J Mech Behav Biomed Mater 2021; 115:104280. [PMID: 33395616 DOI: 10.1016/j.jmbbm.2020.104280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The spinal meninges play a mechanical protective role for the spinal cord. Better knowledge of the mechanical behavior of these tissues wrapping the cord is required to accurately model the stress and strain fields of the spinal cord during physiological or traumatic motions. Then, the mechanical properties of meninges along the spinal canal are not well documented. The aim of this study was to quantify the elastic meningeal mechanical properties along the porcine spinal cord in both the longitudinal direction and in the circumferential directions for the dura-arachnoid maters complex (DAC) and solely in the longitudinal direction for the pia mater. This analysis was completed in providing a range of isotropic hyperelastic coefficients to take into account the toe region. METHODS Six complete spines (C0 - L5) were harvested from pigs (2-3 months) weighing 43±13 kg. The mechanical tests were performed within 12 h post mortem. A preload of 0.5 N was applied to the pia mater and of 2 N to the DAC samples, followed by 30 preconditioning cycles. Specimens were then loaded to failure at the same strain rate 0.2 mm/s (approximately 0.02/s, traction velocity/length of the sample) up to 12 mm of displacement. RESULTS The following mean values were proposed for the elastic moduli of the spinal meninges. Longitudinal DAC elastic moduli: 22.4 MPa in cervical, 38.1 MPa in thoracic and 36.6 MPa in lumbar spinal levels; circumferential DAC elastic moduli: 20.6 MPa in cervical, 21.2 MPa in thoracic and 12.2 MPa in lumbar spinal levels; and longitudinal pia mater elastic moduli: 18.4 MPa in cervical, 17.2 MPa in thoracic and 19.6 MPa in lumbar spinal levels. DISCUSSION The variety of mechanical properties of the spinal meninges suggests that it cannot be regarded as a homogenous structure along the whole length of the spinal cord.
Collapse
Affiliation(s)
- Patrice Sudres
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Morgane Evin
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada.
| | - Eric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Nicolas Bailly
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Anthony Melot
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada; Hôpital privé Clairval, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| |
Collapse
|
8
|
A comprehensive finite element model of surgical treatment for cervical myelopathy. Clin Biomech (Bristol, Avon) 2020; 74:79-86. [PMID: 32145673 DOI: 10.1016/j.clinbiomech.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cervical myelopathy is a common and debilitating chronic spinal cord dysfunction. Treatment includes anterior and/or posterior surgical intervention to decompress the spinal cord and stabilize the spine, but no consensus has been made as to the preferable surgical intervention. The objective of this study was to develop an finite element model of the healthy and myelopathic C2-T1 cervical spine and common anterior and posterior decompression techniques to determine how spinal cord stress and strain is altered in healthy and diseased states. METHODS A finite element model of the C2-T1 cervical spine, spinal cord, pia, dura, cerebral spinal fluid, and neural ligaments was developed and validated against in vivo human displacement data. To model cervical myelopathy, disc herniation and osteophytes were created at the C4-C6 levels. Three common surgical interventions were then incorporated at these levels. FINDINGS The finite element model accurately predicted healthy and myelopathic spinal cord displacement compared to motions observed in vivo. Spinal cord strain increased during extension in the cervical myelopathy finite element model. All surgical techniques affected spinal cord stress and strain. Specifically, adjacent levels had increased stress and strain, especially in the anterior cervical discectomy and fusion case. INTERPRETATIONS This model is the first biomechanically validated, finite element model of the healthy and myelopathic C2-T1 cervical spine and spinal cord which predicts spinal cord displacement, stress, and strain during physiologic motion. Our findings show surgical intervention can cause increased strain in the adjacent levels of the spinal cord which is particularly worse following anterior cervical discectomy and fusion.
Collapse
|
9
|
Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X, Qin X, Wu M, Li D, Tian S, Chen G. A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 2020; 45:1373-1384. [PMID: 32323731 PMCID: PMC7138267 DOI: 10.3892/ijmm.2020.4509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate the effect of the CX3CR1 inhibitor AZD8797 in early recovery after acute SCI and elucidate its potential mechanism in blocking inflammation and apoptosis. Adult rats were sacrificed after 3, 7, 10, or 14 days of SCI. The injured spinal tissues were collected for assessing C-X3-C motif chemokine ligand 1(CX3CL1)/C-X3-C motif chemokine receptor 1 (CX3CR1) expression at each time point via western blotting (WB) and quantitative PCR. The cellular localization of the proteins was detected by immunofluorescence. Another batch of rats (subdivided into sham, injury model, AZD8797 and methylprednisolone groups) were used to evaluate locomotive recovery with a Basso Beattie Bresnahan score. Based on the expression level of CX3CR1, these rats were sacrificed at the most prominent stage of CX3CR1 expression (10 days after SCI), for assessing the serum levels of tumor necrosis factor-α/interleukin (IL)-6/IL-1β and the expression of CX3CL1/CX3CR1/caspase 3/Bcl-2/Bax in the spinal cord tissues through WB and ELISA. Additionally, apoptosis and necrosis in the injured spinal cord were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining/fluoro-jade B staining. Expression levels of both CX3CR1 and CX3CL1 reached their peak 10 days after the injury, followed by a dramatic downward trend at 14 days. The enhanced expression of CX3CR1 was detected in astrocytes and microglia of the injured spinal cord. AZD8797 improved locomotive recovery after 10 days of SCI and was as effective as methylprednisolone. The effect of AZD8797 was mediated by suppressing apoptosis, necrosis and inflammatory responses, as assessed by WB/ELISA and morphological examinations. The current study has demonstrated that AZD8797 can effectively block overwhelming inflammation, apoptosis and necrosis after SCI and facilitate early recovery of locomotive function.
Collapse
Affiliation(s)
- Guozhao Chen
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Liming Wang
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xia Qin
- Department of ICU, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Di Li
- Department of Neurosurgery and Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shoujin Tian
- Department of Orthopedics, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital ofSoochow University, Suzhou, Jiangsu 215031, P.R. China
| |
Collapse
|
10
|
Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3005-3017. [DOI: 10.1089/neu.2018.5930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Mattucci S, Speidel J, Liu J, Kwon BK, Tetzlaff W, Oxland TR. Basic biomechanics of spinal cord injury - How injuries happen in people and how animal models have informed our understanding. Clin Biomech (Bristol, Avon) 2019; 64:58-68. [PMID: 29685426 DOI: 10.1016/j.clinbiomech.2018.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/05/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023]
Abstract
The wide variability, or heterogeneity, in human spinal cord injury is due partially to biomechanical factors. This review summarizes our current knowledge surrounding the patterns of human spinal column injury and the biomechanical factors affecting injury. The biomechanics of human spinal injury is studied most frequently with human cadaveric models and the features of the two most common injury patterns, burst fracture and fracture dislocation, are outlined. The biology of spinal cord injury is typically studied with animal models and the effects of the most relevant biomechanical factors - injury mechanism, injury velocity, and residual compression, are described. Tissue damage patterns and behavioural outcomes following dislocation or distraction injury mechanisms differ from the more commonly used contusion mechanism. The velocity of injury affects spinal cord damage, principally in the white matter. Ongoing, or residual compression after the initial impact does affect spinal cord damage, but few models exist that replicate the clinical scenario. Future research should focus on the effects of these biomechanical factors in different preclinical animal models as recent data suggests that treatment outcomes may vary between models.
Collapse
Affiliation(s)
- Stephen Mattucci
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Jason Speidel
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Orthopaedics, University of British Columbia, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Departments of Zoology and Surgery, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Thomas R Oxland
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Orthopaedics, University of British Columbia, 910 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
12
|
Ramo NL, Troyer KL, Puttlitz CM. Viscoelasticity of spinal cord and meningeal tissues. Acta Biomater 2018; 75:253-262. [PMID: 29852238 DOI: 10.1016/j.actbio.2018.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
Compared to the outer dura mater, the mechanical behavior of spinal pia and arachnoid meningeal layers has received very little attention in the literature. This is despite experimental evidence of their importance with respect to the overall spinal cord stiffness and recovery following compression. Accordingly, inclusion of the mechanical contribution of the pia and arachnoid maters would improve the predictive accuracy of finite element models of the spine, especially in the distribution of stresses and strain through the cord's cross-section. However, to-date, only linearly elastic moduli for what has been previously identified as spinal pia mater is available in the literature. This study is the first to quantitatively compare the viscoelastic behavior of isolated spinal pia-arachnoid-complex, neural tissue of the spinal cord parenchyma, and intact construct of the two. The results show that while it only makes up 5.5% of the overall cross-sectional area, the thin membranes of the innermost meninges significantly affect both the elastic and viscous response of the intact construct. Without the contribution of the pia and arachnoid maters, the spinal cord has very little inherent stiffness and experiences significant relaxation when strained. The ability of the fitted non-linear viscoelastic material models of each condition to predict independent data within experimental variability supports their implementation into future finite element computational studies of the spine. STATEMENT OF SIGNIFICANCE The neural tissue of the spinal cord is surrounded by three fibrous layers called meninges which are important in the behavior of the overall spinal-cord-meningeal construct. While the mechanical properties of the outermost layer have been reported, the pia mater and arachnoid mater have received considerably less attention. This study is the first to directly compare the behavior of the isolated neural tissue of the cord, the isolated pia-arachnoid complex, and the construct of these individual components. The results show that, despite being very thin, the inner meninges significantly affect the elastic and time-dependent response of the spinal cord, which may have important implications for studies of spinal cord injury.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kevin L Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
13
|
Khuyagbaatar B, Kim K, Park WM, Lee S, Kim YH. Increased stress and strain on the spinal cord due to ossification of the posterior longitudinal ligament in the cervical spine under flexion after laminectomy. Proc Inst Mech Eng H 2017; 231:898-906. [PMID: 28660796 DOI: 10.1177/0954411917718222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myelopathy in the cervical spine due to cervical ossification of the posterior longitudinal ligament could be induced by static compression and/or dynamic factors. It has been suggested that dynamic factors need to be considered when planning and performing the decompression surgery on patients with the ossification of the posterior longitudinal ligament. A finite element model of the C2-C7 cervical spine in the neutral position was developed and used to generate flexion and extension of the cervical spine. The segmental ossification of the posterior longitudinal ligament on the C5 was assumed, and laminectomy was performed on C4-C6 according to a conventional surgical technique. For various occupying ratios of the ossified ligament between 20% and 60%, von-Mises stresses, maximum principal strains in the spinal cord, and cross-sectional area of the cord were investigated in the pre-operative and laminectomy models under flexion, neutral position, and extension. The results were consistent with previous experimental and computational studies in terms of stress, strain, and cross-sectional area. Flexion leads to higher stresses and strains in the cord than the neutral position and extension, even after decompression surgery. These higher stresses and strains might be generated by residual compression occurring at the segment with the ossification of the posterior longitudinal ligament. This study provides fundamental information under different neck positions regarding biomechanical characteristics of the spinal cord in cervical ossification of the posterior longitudinal ligament.
Collapse
Affiliation(s)
| | - Kyungsoo Kim
- 2 Department of Applied Mathematics, Kyung Hee University, Yongin, Korea
| | - Won Man Park
- 1 Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - SuKyoung Lee
- 3 Department of Computer Science, Yonsei University, Seoul, Korea
| | - Yoon Hyuk Kim
- 1 Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| |
Collapse
|
14
|
Khuyagbaatar B, Kim K, Park WM, Kim YH. Biomechanical investigation of post-operative C5 palsy due to ossification of the posterior longitudinal ligament in different types of cervical spinal alignment. J Biomech 2017; 57:54-61. [DOI: 10.1016/j.jbiomech.2017.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 11/15/2022]
|
15
|
Khuyagbaatar B, Kim K, Man Park W, Hyuk Kim Y. Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms. J Biomech Eng 2016; 138:2528303. [DOI: 10.1115/1.4033794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.
Collapse
Affiliation(s)
- Batbayar Khuyagbaatar
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea e-mail:
| |
Collapse
|
16
|
Khuyagbaatar B, Kim K, Park WM, Kim YH. Effect of posterior decompression extent on biomechanical parameters of the spinal cord in cervical ossification of the posterior longitudinal ligament. Proc Inst Mech Eng H 2016; 230:545-52. [PMID: 26951839 DOI: 10.1177/0954411916637383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/11/2016] [Indexed: 11/17/2022]
Abstract
Ossification of the posterior longitudinal ligament is a common cause of the cervical myelopathy due to compression of the spinal cord. Patients with ossification of the posterior longitudinal ligament usually require the decompression surgery, and there is a need to better understand the optimal surgical extent with which sufficient decompression without excessive posterior shifting can be achieved. However, few quantitative studies have clarified this optimal extent for decompression of cervical ossification of the posterior longitudinal ligament. We used finite element modeling of the cervical spine and spinal cord to investigate the effect of posterior decompression extent for continuous-type cervical ossification of the posterior longitudinal ligament on changes in stress, strain, and posterior shifting that occur with three different surgical methods (laminectomy, laminoplasty, and hemilaminectomy). As posterior decompression extended, stress and strain in the spinal cord decreased and posterior shifting of the cord increased. The location of the decompression extent also influenced shifting. Laminectomy and laminoplasty were very similar in terms of decompression results, and both were superior to hemilaminectomy in all parameters tested. Decompression to the extents of C3-C6 and C3-C7 of laminectomy and laminoplasty could be considered sufficient with respect to decompression itself. Our findings provide fundamental information regarding the treatment of cervical ossification of the posterior longitudinal ligament and can be applied to patient-specific surgical planning.
Collapse
Affiliation(s)
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin, Korea
| | - Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| |
Collapse
|
17
|
Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I. Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Mol Neurobiol 2016; 54:2167-2188. [PMID: 26927660 PMCID: PMC5355526 DOI: 10.1007/s12035-016-9787-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
CX3CL1 (fractalkine) is the only member of the CX3C (delta) subfamily of chemokines which is unique and combines the properties of both chemoattractant and adhesion molecules. The two-form ligand can exist either in a soluble form, like all other chemokines, and as a membrane-anchored molecule. CX3CL1 discloses its biological properties through interaction with one dedicated CX3CR1 receptor which belongs to a family of G protein-coupled receptors (GPCR). The CX3CL1/CX3CR1 axis acts in many physiological phenomena including those occurring in the central nervous system (CNS), by regulating the interactions between neurons, microglia, and immune cells. Apart from the role under physiological conditions, the CX3CL1/CX3CR1 axis was implied to have a role in different neuropathologies such as traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries represent a serious public health problem, despite improvements in therapeutic management. To date, no effective treatment has been determined, so they constitute a leading cause of death and severe disability. The course of TBI and SCI has two consecutive poorly demarcated phases: the initial, primary injury and secondary injury. Recent evidence has implicated the role of the CX3CL1/CX3CR1 axis in neuroinflammatory processes occurring after CNS injuries. The importance of the CX3CL1/CX3CR1 axis in the pathophysiology of TBI and SCI in the context of systemic and direct local immune response is still under investigation. This paper, based on a review of the literature, updates and summarizes the current knowledge about CX3CL1/CX3CR1 axis involvement in TBI and SCI pathogenesis, indicating possible molecular and cellular mechanisms with a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Łukasz A Poniatowski
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.
| | - Piotr Wojdasiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland.,Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Maciej Krawczyk
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957, Warsaw, Poland.,Department of Pediatric and Neurological Rehabilitation, Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Marymoncka 34, 00-968, Warsaw, Poland
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology, 2nd Faculty of Medicine, Medical University of Warsaw, Pawińskiego 3C, 02-106, Warsaw, Poland
| | - Robert Gasik
- Department of Rheumaorthopaedics, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland
| | - Łukasz Kubaszewski
- Department of Neuroorthopaedics and Neurology, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637, Warsaw, Poland.,Department of Orthopaedics and Traumatology, Wiktor Dega Orthopaedic and Rehabilitation Clinical Hospital, Poznań University of Medical Sciences, 28 Czerwca 1956 135/147, 61-545, Poznań, Poland
| | | |
Collapse
|
18
|
Khuyagbaatar B, Kim K, Kim YH. Conversion Equation between the Drop Height in the New York University Impactor and the Impact Force in the Infinite Horizon Impactor in the Contusion Spinal Cord Injury Model. J Neurotrauma 2015; 32:1987-93. [DOI: 10.1089/neu.2015.3875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin, Korea
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Korea
| |
Collapse
|