1
|
Fan Z, Lu J, Cheng H, Ye X, Deng X, Zhao P, Liu J, Liu M. Insights from Computational Fluid Dynamics and In Vitro Studies for Stent Protrusion in Iliac Vein: How Far Shall We Go? Cardiovasc Eng Technol 2025; 16:79-90. [PMID: 39528864 DOI: 10.1007/s13239-024-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
These findings provide significant implications for the enhancement of iliac vein stent implantation strategies and stent design. The prevalent use of stents for treating Iliac Vein Compression Syndrome (IVCS) has shown efficacy, yet the associated clinical adverse events, including stent restenosis and postoperative thrombosis, are significant concerns. Up to now, the mechanism how the stent implantation induces the restenosis and DVT is still unclear. Our study hypothesizes that these adverse outcomes arise from altered blood flow dynamics following stent implantation. Employing computational modeling and medical imaging, we simulated IVCS after various stenting procedures to assess their impact on venous blood flow characteristics, including wall shear stress (WSS), residence time (RRT), and oscillatory shear index (OSI). Our findings reveal that a stent protruding into the vena cava impedes blood circulation, with increased protrusion exacerbating this obstruction. This is particularly evident at the vein bifurcation, where low WSS and elevated OSI and RRT are observed. Moreover, a higher stent strut density further obstructs blood flow, deteriorating the hemodynamic environment. Consequently, stent protrusion into the vena cava can enhance the likelihood of adverse post-surgical events. These insights have profound implications for optimizing iliac vein stent implantation techniques and stent design.
Collapse
Affiliation(s)
- Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, 213001, Changzhou Jiangsu, Jiangsu, China
| | - Jian Lu
- School of Mechanical Engineering, Jiangsu University of Technology, 213001, Changzhou Jiangsu, Jiangsu, China
| | - Hao Cheng
- School of Mechanical Engineering, Jiangsu University of Technology, 213001, Changzhou Jiangsu, Jiangsu, China
| | - Xia Ye
- School of Mechanical Engineering, Jiangsu University of Technology, 213001, Changzhou Jiangsu, Jiangsu, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191, Beijing, China
| | - Pengfei Zhao
- Department of Vascular Surgery, Beijing Friendship Hospital, Beijing Center of Vascular Surgery, Capital Medical University, 100050, Beijing, China
| | - Junjun Liu
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Mingyuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Beijing Center of Vascular Surgery, Capital Medical University, 100050, Beijing, China.
| |
Collapse
|
2
|
Stark AW, Giannopoulos AA, Pugachev A, Shiri I, Haeberlin A, Räber L, Obrist D, Gräni C. Application of Patient-Specific Computational Fluid Dynamics in Anomalous Aortic Origin of Coronary Artery: A Systematic Review. J Cardiovasc Dev Dis 2023; 10:384. [PMID: 37754814 PMCID: PMC10532130 DOI: 10.3390/jcdd10090384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Anomalous aortic origin of a coronary artery (AAOCA) is a rare congenital heart condition with fixed and dynamic stenotic elements, potentially causing ischemia. Invasive coronary angiography under stress is the established method for assessing hemodynamics in AAOCA, yet it is costly, technically intricate, and uncomfortable. Computational fluid dynamics (CFD) simulations offer a noninvasive alternative for patient-specific hemodynamic analysis in AAOCA. This systematic review examines the role of CFD simulations in AAOCA, encompassing patient-specific modeling, noninvasive imaging-based boundary conditions, and flow characteristics. Screening articles using AAOCA and CFD-related terms prior to February 2023 yielded 19 publications, covering 370 patients. Over the past four years, 12 (63%) publications (259 patients) employed dedicated CFD models, whereas 7 (37%) publications (111 patients) used general-purpose CFD models. Dedicated CFD models were validated for fixed stenosis but lacked dynamic component representation. General-purpose CFD models exhibited variability and limitations, with fluid-solid interaction models showing promise. Interest in CFD modeling of AAOCA has surged recently, mainly utilizing dedicated models. However, these models inadequately replicate hemodynamics, necessitating novel CFD approaches to accurately simulate pathophysiological changes in AAOCA under stress conditions.
Collapse
Affiliation(s)
- Anselm W. Stark
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Andreas A. Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, 8091 Zurich, Switzerland;
| | | | - Isaac Shiri
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Lorenz Räber
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, Faculty of Medicine, University of Bern, 3008 Bern, Switzerland;
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (A.W.S.); (I.S.); (A.H.); (L.R.)
| |
Collapse
|
3
|
Wild NC, Bulusu KV, Plesniak MW. Vortical Structures Promote Atheroprotective Wall Shear Stress Distributions in a Carotid Artery Bifurcation Model. Bioengineering (Basel) 2023; 10:1036. [PMID: 37760138 PMCID: PMC10525770 DOI: 10.3390/bioengineering10091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Carotid artery diseases, such as atherosclerosis, are a major cause of death in the United States. Wall shear stresses are known to prompt plaque formation, but there is limited understanding of the complex flow structures underlying these stresses and how they differ in a pre-disposed high-risk patient cohort. A 'healthy' and a novel 'pre-disposed' carotid artery bifurcation model was determined based on patient-averaged clinical data, where the 'pre-disposed' model represents a pathological anatomy. Computational fluid dynamic simulations were performed using a physiological flow based on healthy human subjects. A main hairpin vortical structure in the internal carotid artery sinus was observed, which locally increased instantaneous wall shear stress. In the pre-disposed geometry, this vortical structure starts at an earlier instance in the cardiac flow cycle and persists over a much shorter period, where the second half of the cardiac cycle is dominated by perturbed secondary flow structures and vortices. This coincides with weaker favorable axial pressure gradient peaks over the sinus for the 'pre-disposed' geometry. The findings reveal a strong correlation between vortical structures and wall shear stress and imply that an intact internal carotid artery sinus hairpin vortical structure has a physiologically beneficial role by increasing local wall shear stresses. The deterioration of this beneficial vortical structure is expected to play a significant role in atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Nora C. Wild
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
| | - Kartik V. Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
| | - Michael W. Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA; (N.C.W.); (K.V.B.)
- Department of Biomedical Engineering, The George Washington University, 800 22nd Street NW, Science & Engineering Hall, Suite 3000, Washington, DC 20052, USA
| |
Collapse
|
4
|
Yang J, Bai Z, Song C, Ding H, Chen M, Sun J, Liu X. Research on the Internal Flow Field of Left Atrial Appendage and Stroke Risk Assessment with Different Blood Models. Bioengineering (Basel) 2023; 10:944. [PMID: 37627830 PMCID: PMC10451249 DOI: 10.3390/bioengineering10080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Extant clinical research has underscored that patients suffering from atrial fibrillation (AF) bear an elevated risk for stroke, predominantly driven by the formation of thrombus in the left atrial appendage (LAA). As such, accurately identifying those at an increased risk of thrombosis becomes paramount to facilitate timely and effective treatment. This study was designed to shed light on the mechanisms underlying thrombus formation in the LAA by employing three-dimensional (3D) left atrium (LA) models of AF patients, which were constructed based on Computed Tomography (CT) imaging. The distinct benefits of Computational Fluid Dynamics (CFD) were leveraged to simulate the blood flow field within the LA, using three distinct blood flow models, both under AF and sinus rhythm (SR) conditions. The potential risk of thrombus formation was evaluated by analyzing the Relative Residence Time (RRT) and Endothelial Cell Activation Potential (ECAP) values. The results gleaned from this study affirm that all three blood flow models align with extant clinical guidelines, thereby enabling an effective prediction of thrombosis risk. However, noteworthy differences emerged when comparing the intricacies of the flow field and thrombosis risk across the three models. The single-phase non-Newtonian blood flow model resulted in comparatively lower residence times for blood within the LA and lower values for the Oscillatory Shear Index (OSI), RRT, and ECAP within the LAA. These findings suggest a reduced thrombosis risk. Conversely, the two-phase non-Newtonian blood flow model exhibited a higher residence time for blood and elevated RRT value within the LAA, suggesting an increased risk for thrombosis.
Collapse
Affiliation(s)
- Jun Yang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.B.); (C.S.)
| | - Zitao Bai
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.B.); (C.S.)
| | - Chentao Song
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.Y.); (Z.B.); (C.S.)
| | - Huirong Ding
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (H.D.); (M.C.)
| | - Mu Chen
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (H.D.); (M.C.)
| | - Jian Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (H.D.); (M.C.)
| | - Xiaohua Liu
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yang J, Song C, Ding H, Chen M, Sun J, Liu X. Numerical study of the risk of thrombosis in the left atrial appendage of chicken wing shape in atrial fibrillation. Front Cardiovasc Med 2022; 9:985674. [PMID: 36505384 PMCID: PMC9732567 DOI: 10.3389/fcvm.2022.985674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Atrial fibrillation (AF) is a common and life-threatening disease. For the patients with AF, more than 90% of the thrombi are formed in the left atrial appendage (LAA), thrombus dislodgement can cause vascular embolism, making them is becoming a high-risk group for stroke. Therefore, identifying the patients with high risk of thrombosis is crucial for advanced stroke warning. To better investigate the mechanism behind thrombus formation in the LAA, this study reconstructed the 3-D Left Atrium (LA) models of six AF volunteer patients by corresponding Computed Tomography (CT) images. Combine the advantages of Computational Fluid Dynamics (CFD), the blood flow field in LA both in AF and sinus heart rate states were studied. The risk of thrombus was evaluated based on the blood viscosity, shear rate thrombus prediction model and Time Average Wall Shear Stress (TAWSS), Oscillatory Shear Index (OSI), and Relative Residence Time (RRT) values. The results showed that the left atrium had lower blood flow velocity and TAWSS values at the LAA in both AF and sinus rhythm, thus the LAA is the most thrombogenic region in the LA. Besides, the RRT value of LAA was generally higher in AF than in sinus rhythm. Therefore, AF carries a higher risk of thrombosis.
Collapse
Affiliation(s)
- Jun Yang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chentao Song
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huirong Ding
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Chen
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Sun,
| | - Xiaohua Liu
- School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China,Key Laboratory (Fluid Machinery and Engineering Research Base) of Sichuan Province, Xihua University, Chengdu, China,Xiaohua Liu,
| |
Collapse
|
6
|
Gong J, Zhang Y, Zhang H, Li Q, Ren G, Lu W, Wang J. Evaluation of Blood Coagulation by Optical Vortex Tracking. SENSORS (BASEL, SWITZERLAND) 2022; 22:4793. [PMID: 35808290 PMCID: PMC9269077 DOI: 10.3390/s22134793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Blood coagulation is a complicated dynamic process that maintains the blood's fluid state and prevents uncontrollable bleeding. The real-time monitoring of coagulation dynamics is critical for blood transfusion guidance, emergency management of trauma-induced coagulopathy, perioperative bleeding, and targeted hemostatic therapy. Here, we utilize optical vortex dynamics to detect the blood coagulation dynamic process in a rapid and non-contact manner. To characterize the temporal changes in viscoelastic properties of blood during coagulation, we track the stochastic motion of optical vortices in the time-varying speckles reflected from 100 blood samples with varied coagulation profiles. The mean square displacement (MSD) of the vortices increases nonlinearly with time lag during blood coagulation reminiscent of the particles in viscoelastic fluids. The MSD curves with coagulation time are similar to the tracings of thromboelastography (TEG) during the blood coagulation. The retrieved coagulation parameters, such as reaction time and activated clotting time measured using the optical vortex method, exhibit a close correlation to those parameters acquired from TEG. These results demonstrate the feasibility of the optical vortex method for monitoring blood coagulation at the point of care. Our method is also applicable to measuring the viscoelasticity of complex fluids and turbid soft matters.
Collapse
Affiliation(s)
- Jiaxing Gong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Yaowen Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Hui Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Qi Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Guangbin Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Wenjian Lu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
| | - Jing Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (J.G.); (Y.Z.); (H.Z.); (Q.L.); (G.R.); (W.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| |
Collapse
|
7
|
Reorowicz P, Tyfa Z, Obidowski D, Wiśniewski K, Stefańczyk L, Jóźwik K, Levy ML. Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Investigations into the Potential of Using Open Source CFD to Analyze the Differences in Hemodynamic Parameters for Aortic Dissections (Healthy versus Stanford Type A and B). Ann Vasc Surg 2021; 79:310-323. [PMID: 34648855 DOI: 10.1016/j.avsg.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 08/14/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The objective of this study was to develop a method to evaluate the effects of an aortic dissection on hemodynamic parameters by conducting a comparison with that of a healthy (nondissected) aorta. Open-source software will be implemented, no proprietary software/application will be used to ensure accessorily and repeatability, in all the data analysis and processing. Computed tomography (CT) images of aortic dissection are used for the model geometry segmentation. Boundary conditions from literature are implemented to computational fluid dynamics (CFD) to analyze the hemodynamic parameters. METHODS A numerical simulation model was created by obtaining accurate 3-dimensional geometries of aortae from CT images. In this study, CT images of 8 cases of aortic dissection (Stanford type-A and type-B) and 3 cases of healthy aortae are used for the actual aorta model geometry segmentation. These models were exported into an open-source CFD software, OpenFOAM, where a simplified pulsating flow was simulated by controlling the flow pressure. Ten cycles of the pulsatile flow (0.50 sec/cycle) conditions, totaling 5 sec, were calculated. RESULTS The pressure distribution, wall shear stress (WSS) and flow velocity streamlines within the aorta and the false lumen were calculated and visualized. It was found that the flow velocity and WSS had a high correlation in high WSS areas of the intermittent layer between the true and false lumen. Most of the Stanford type-A dissections in the study showed high WSS, over 38 Pa, at the systole phase. This indicates that the arterial walls in type-A dissections are more likely to be damaged with pulsatile flow. CONCLUSIONS Using CFD to estimate localized high WSS areas may help in deciding to treat a type-A or B dissection with a stent graft to prevent a potential rupture.
Collapse
|
9
|
Computational Fluid Dynamic Technique for Assessment of How Changing Character of Blood Flow and Different Value of Hct Influence Blood Hemodynamic in Dissected Aorta. Diagnostics (Basel) 2021; 11:diagnostics11101866. [PMID: 34679564 PMCID: PMC8534802 DOI: 10.3390/diagnostics11101866] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Using computer tomography angiography (CTA) and computational structural analysis, we present a non-invasive method of mass flow rate/velocity and wall stress analysis in type B aortic dissection. Three-dimensional (3D) computer models of the aorta were calculated using pre-operative (baseline) and post-operative CT data from 12 male patients (aged from 51 to 64 years) who were treated for acute type B dissection. A computational fluid dynamics (CFD) technique was used to quantify the displacement forces acting on the aortic wall in the areas of endografts placement. The mass flow rate and wall stress were measured and quantified using the CFD technique. The CFD model indicated the places with a lower value of blood velocity and shear rate, which corelated with higher blood viscosity and a probability of thrombus appearance. Moreover, with the increase in Hct, blood viscosity also increased, while the intensity of blood flow provoked changing viscosity values in these areas. Furthermore, the velocity gradient near the tear surface caused high wall WSS; this could lead to a decreased resistance in the aorta’s wall with further implications to a patient.
Collapse
|
10
|
Cong M, Zhao H, Dai S, Chen C, Xu X, Qiu J, Qin S. Transient numerical simulation of the right coronary artery originating from the left sinus and the effect of its acute take-off angle on hemodynamics. Quant Imaging Med Surg 2021; 11:2062-2075. [PMID: 33936987 DOI: 10.21037/qims-20-125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background An anomalous origin of the right coronary artery from the left coronary artery sinus is usually characterized by an acute take-off angle. Most affected patients have no clinical symptoms; however, some patients have decreased blood flow into the right coronary artery during exercise, which can lead to symptoms such as myocardial ischemia. Most researchers who have studied an anomalous origin of the right coronary artery from the left coronary artery sinus have done so through clinical cases. In this study, we used numerical simulation to evaluate the hemodynamics of this condition and the effect of an acute take-off angle on hemodynamic parameters. We expect that the results of this study will help in further understanding the clinical symptoms of this anomaly and the hemodynamic impact of an acute take-off angle. Methods Three-dimensional models were reconstructed based on the computed tomography images from 16 patients with a normal right coronary artery and 26 patients with an anomalous origin of the right coronary artery from the left coronary artery sinus. A numerical simulation of a two-way fluid-structure interaction was executed with ANSYS Workbench software. The blood was assumed to be an incompressible Newtonian fluid, and the vessel was assumed to be an isotropic, linear elastic material. Hemodynamic parameters and the effect of an acute take-off angle were statistically analyzed. Results During the systolic period, the wall pressure in the right coronary artery was significantly reduced in patients with an anomalous origin of the right coronary artery (t =1.32 s, P=0.0001; t =1.34-1.46 s, P<0.0001). The wall shear stress in the abnormal group was higher at the beginning of the systolic period (t =1.24 s, P=0.0473; t =1.26 s, P=0.0193; t =1.28 s, P=0.0441). The acute take-off angle was smaller in patients with clinical symptoms (27.81°±4.406°) than in patients without clinical symptoms (31.86°±2.789°; P=0.017). In the symptomatic group, pressure was negatively correlated with the acute take-off angle (P=0.0185-0.0341, r=-0.459 to -0.4167). Conclusions This study shows that an anomalous origin of the right coronary artery from the left coronary artery sinus causes changes in hemodynamic parameters, and that an acute take-off angle in patients with this anomaly is associated with terminal ischemia of the right coronary artery.
Collapse
Affiliation(s)
- Mengyang Cong
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Huihui Zhao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Center for Medical Engineer Technology Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Shun Dai
- Department of Radiology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanzhi Chen
- Department of Radiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xingming Xu
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Tai'an, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Center for Medical Engineer Technology Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Shengxue Qin
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Liu MY, Jiao Y, Liu J, Zhang S, Li W. Hemodynamic Parameters Predict In-stent Thrombosis After Multibranched Endovascular Repair of Complex Abdominal Aortic Aneurysms: A Retrospective Study of Branched Stent-Graft Thrombosis. Front Cardiovasc Med 2021; 8:654412. [PMID: 33969018 PMCID: PMC8102902 DOI: 10.3389/fcvm.2021.654412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Branch vessel occlusion is reported in endovascular repair of aortic pathology. This study aimed to evaluate the hemodynamic indicators associated with in-stent thrombosis (IST) of a branched stent-graft (BSG) after endovascular aortic repair (EVAR) of a complex abdominal aortic aneurysm. Methods: A retrospective evaluation was performed based on the computed tomography (CT) scans and clinical data of three patients who underwent multi-branched endovascular repair. Patient-specific 3-dimensional models were reconstructed, and hemodynamic analysis was performed for IST. Hemodynamics-related parameters including time-averaged wall shear stress (TAWSS), oscillatory shear stress index (OSI), and relative residence time (RRT) were compared among the individual patients. Results: The flow velocity, TAWSS, OSI, and RRT were radically changed in the area of the IST. In BSGs, IST tended to occur in the regions of hemodynamic alteration near the bends in the device, where a decreased flow velocity (<0.6 m/s) and TAWSS (<0.8 Pa) and an elevated OSI (>0.2) and RRT (>5 s) were consistently observed. Conclusions: Hemodynamic perturbations in BSGs cause a predisposition to IST, which can be predicted by a series of changes in the flow parameters. Early hemodynamic analysis might be useful for identifying and remediating IST after multibranched endovascular repair.
Collapse
Affiliation(s)
- Ming-Yuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Center for Vascular Surgery, Beijing, China
| | - Yang Jiao
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Junjun Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Simeng Zhang
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China.,Department of Pediatric Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Li
- Department of Vascular Surgery, Peking University People's Hospital, Beijing, China.,The Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
12
|
Yazdi SG, Docherty PD, Khanafer A, Jermy M, Kabaliuk N, Geoghegan PH, Williamson P. In-vitro particle image velocimetry assessment of the endovascular haemodynamic features distal of stent-grafts that are associated with development of limb occlusion. J R Soc N Z 2020. [DOI: 10.1080/03036758.2020.1826988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sina G. Yazdi
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Paul D. Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| | - Adib Khanafer
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Mark Jermy
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Patrick H. Geoghegan
- Department of Biomedical Engineering, School of Life & Health Sciences, Aston University, Birmingham, UK
- Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa
| | - Petra Williamson
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
13
|
Kyriakou F, Maclean C, Dempster W, Nash D. Efficiently Simulating an Endograft Deployment: A Methodology for Detailed CFD Analyses. Ann Biomed Eng 2020; 48:2449-2465. [PMID: 32394221 PMCID: PMC7505889 DOI: 10.1007/s10439-020-02519-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/24/2020] [Indexed: 01/10/2023]
Abstract
Numerical models of endografts for the simulation of endovascular aneurysm repair are increasingly important in the improvement of device designs and patient outcomes. Nevertheless, current finite element analysis (FEA) models of complete endograft devices come at a high computational cost, requiring days of runtime, therefore restricting their applicability. In the current study, an efficient FEA model of the Anaconda™ endograft (Terumo Aortic, UK) was developed, able to yield results in just over 4 h, an order of magnitude less than similar models found in the literature. The model was used to replicate a physical device that was deployed in a 3D printed aorta and comparison of the two shapes illustrated a less than 5 mm placement error of the model in the regions of interest, consistent with other more computationally intensive models in the literature. Furthermore, the final goal of the study was to utilize the deployed fabric model in a hemodynamic analysis that would incorporate realistic fabric folds, a feature that is almost always omitted in similar simulations. By successfully exporting the deployed graft geometry into a flow analysis, it was illustrated that the inclusion of fabric wrinkles enabled clinically significant flow patterns such as flow stagnation and recirculation to be detected, paving the way for this modelling methodology to be used in future for stent design optimisation.
Collapse
Affiliation(s)
- Faidon Kyriakou
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK.
| | | | - William Dempster
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| | - David Nash
- Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK
| |
Collapse
|
14
|
Spatial Configuration of Abdominal Aortic Aneurysm Analysis as a Useful Tool for the Estimation of Stent-Graft Migration. Diagnostics (Basel) 2020; 10:diagnostics10100737. [PMID: 32977588 PMCID: PMC7598279 DOI: 10.3390/diagnostics10100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to prepare a self-made mathematical algorithm for the estimation of risk of stent-graft migration with the use of data on abdominal aortic aneurysm (AAA) size and geometry of blood flow through aneurysm sac before or after stent-graft implantation. AngioCT data from 20 patients aged 50–60 years, before and after stent-graft placement in the AAA was analyzed. In order to estimate the risk of stent-graft migration for each patient we prepared an opposite spatial configuration of virtually reconstructed stent-graft with long body or short body. Thus, three groups of 3D geometries were analyzed: 20 geometries representing 3D models of aneurysm, 20 geometries representing 3D models of long body stent-grafts, and 20 geometries representing 3D models of short body stent-graft. The proposed self-made algorithm demonstrated its efficiency and usefulness in estimating wall shear stress (WSS) values. Comparison of the long or short type of stent-graft with AAA geometries allowed to analyze the implants’ spatial configuration. Our study indicated that short stent-graft, after placement in the AAA sac, generated lower drug forces compare to the long stent-graft. Each time shape factor was higher for short stent-graft compare to long stent-graft.
Collapse
|
15
|
Shape and Enhancement Analysis as a Useful Tool for the Presentation of Blood Hemodynamic Properties in the Area of Aortic Dissection. J Clin Med 2020; 9:jcm9051330. [PMID: 32370301 PMCID: PMC7290319 DOI: 10.3390/jcm9051330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to create a mathematical approach for blood hemodynamic description with the use of brightness analysis. Medical data was collected from three male patients aged from 45 to 65 years with acute type IIIb aortic dissection that started proximal to the left subclavian artery and involved the renal arteries. For the recognition of wall dissection areas Digital Imaging and Communications in Medicine (DICOM) data were applied. The distance from descending aorta to the diaphragm was analyzed. Each time Feret (DF) and Hydraulic (DHy) diameter were calculated. Moreover, an average brightness (BAV) was analyzed. Finally, to describe blood hemodynamic in the area of aortic wall dissection, mathematical function combining difference in brightness value and diameter for each computed tomography (CT) scan was calculated. The results indicated that DF described common duct more accurately compare to DHy. While, DHy described more accurately true and false ducts. Each time when connection of true and false duct appeared, true duct had lower brightness compare to common duct and false duct. Moreover, false duct characterized with higher brightness compare to common duct. In summary, the proposed algorithm mimics changes in brightness value for patients with acute type IIIb aortic dissection.
Collapse
|
16
|
Computational Fluid Dynamics Modeling of Hemodynamic Parameters in the Human Diseased Aorta: A Systematic Review. Ann Vasc Surg 2020; 63:336-381. [DOI: 10.1016/j.avsg.2019.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/09/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
17
|
Mendieta JB, Fontanarosa D, Wang J, Paritala PK, McGahan T, Lloyd T, Li Z. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol 2020; 19:1477-1490. [DOI: 10.1007/s10237-019-01282-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
|
18
|
Polanczyk A, Podgorski M, Polanczyk M, Veshkina N, Zbicinski I, Stefanczyk L, Neumayer C. A novel method for describing biomechanical properties of the aortic wall based on the three-dimensional fluid-structure interaction model. Interact Cardiovasc Thorac Surg 2019; 28:306-315. [PMID: 30101344 DOI: 10.1093/icvts/ivy252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/27/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Our goal was to present a novel non-invasive approach for assessment of aortic wall displacement to describe its biomechanical properties during the cardiac cycle. METHODS The fluid-structure interaction (FSI) technique was used to reconstruct aortic wall displacement based on computed tomography angiography and 2-dimensional speckle-tracking technique (2DSTT) data collected from 20 patients [10 with healthy aortas (AA) and 10 with abdominal aortic aneurysms (AAAs)]. The mechanical properties of the wall of the aorta were described by the Yeoh hyperelastic materials model with α and β parameters, and wall displacement was determined with 2DSTT. The mechanical parameters of the wall of the aorta in the FSI model were automatically updated in the calculation loop until the calculated and clinically measured wall movements were the same. RESULTS Results showed 98% accuracy of FSI compared to 2DSTT for AA and AAA (P > 0.05). The mean wall deformation for AA was 2.45 ± 0.12 mm and 2.49 ± 0.10 mm for FSI and 2DSTT, respectively (P = 0.40), whereas that for AAA was 2.84 ± 0.44 mm and 2.88 ± 0.45 mm, respectively (P = 0.83). The FSI analysis indicated that the α and β parameters for AA were equal to 14.35 ± 1.30 N⋅cm-2 and 9.33 ± 1.08 N⋅cm-2, respectively; and for AAA, α was 11.00 ± 0.49 N⋅cm-2 and β was 79.46 ± 4.32 N⋅cm-2. CONCLUSIONS The FSI technique may be successfully applied to assess the mechanical parameters of patient-specific aortic walls using computed tomography angiographic and 2DSTT measurements.
Collapse
Affiliation(s)
- Andrzej Polanczyk
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Michal Podgorski
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| | - Maciej Polanczyk
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Natasha Veshkina
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Zbicinski
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ludomir Stefanczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Polanczyk A, Podgorski M, Polanczyk M, Piechota-Polanczyk A, Stefanczyk L, Strzelecki M. A novel vision-based system for quantitative analysis of abdominal aortic aneurysm deformation. Biomed Eng Online 2019; 18:56. [PMID: 31088563 PMCID: PMC6518716 DOI: 10.1186/s12938-019-0681-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In clinical diagnostics, combination of different imaging techniques is applied to assess spatial configuration of the abdominal aortic aneurysm (AAA) and deformation of its wall. As deformation of aneurysm wall is crucial parameter in assessing wall rupture, we aimed to develop and validate a Non-Invasive Vision-Based System (NIVBS) for the analysis of 3D elastic artificial abdominal aortic models. 3D-printed elastic AAA models from four patients were applied for the reconstruction of real hemodynamic. During experiments, the inlet boundary conditions included the injection volume and frequency of pulsation averaged from electrocardiography traces. NIVBS system was equipped with nine cameras placed at a constant distance to record wall movement from 360o angle and a dedicated set of artificial lights providing coherent illumination. Additionally, self-prepared algorithms for image acquisition, processing, segmentation, and contour detection were used to analyze wall deformation. Finally, the shape deformation factor was applied to evaluate aorta's deformation. Experimental results were confronted with medical data from AngioCT and 2D speckle-tracking echocardiography (2DSTE). RESULTS Image square analyses indicated that the optimal distance between the camera's lens and the investigated object was in the range of 0.30-0.35 m. There was approximately 1.44% difference observed in aneurysm diameters between NIVBS (86.57 ± 5.86 mm) and AngioCT (87.82 ± 6.04 mm) (p = 0.7764). The accuracy of developed algorithm for the reconstruction of the AAA deformation was equal to 98.56%. Bland-Altman analysis showed that the difference between clinical data (2DSTE) and predicted wall deformation (NIVBS) for all patients was 0.00 mm (confidence interval equal to 0.12 mm) for aneurysm size, 0.01 mm (confidence interval equal to 0.13 mm) and 0.00 mm (confidence interval equal to 0.09 mm) for the anterior and posterior side, as well as 0.01 mm (confidence interval equal to 0.18 mm) and 0.01 mm (confidence interval equal to 0.11 mm) for the left and right side. The optimal range of camera's lens did not affect acquired values. CONCLUSIONS The NIVBS with proposed algorithm that reconstructs the pressure from surrounding organs is appropriate to analyze the AAAs in water environment. Moreover, NIVBS allowed detailed quantitative analysis of aneurysm sac wall deformation.
Collapse
Affiliation(s)
- Andrzej Polanczyk
- Faculty of Process and Environmental Engineering, Department of Heat and Mass Transfer, Lodz University of Technology, Łódź, Poland.
| | - Michal Podgorski
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Łódź, Poland
| | - Maciej Polanczyk
- Faculty of Process and Environmental Engineering, Department of Heat and Mass Transfer, Lodz University of Technology, Łódź, Poland
| | | | - Ludomir Stefanczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Łódź, Poland
| | - Michal Strzelecki
- Institute of Electronics, Lodz University of Technology, Łódź, Poland
| |
Collapse
|
20
|
Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear. Biomech Model Mechanobiol 2019; 18:1461-1474. [PMID: 31055691 PMCID: PMC6748893 DOI: 10.1007/s10237-019-01154-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The ability of a blood clot to modulate blood flow is determined by the clot’s resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain—and, therefore, clot occlusivity—was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner “core” region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.
Collapse
|
21
|
Computational Fluid Dynamic Accuracy in Mimicking Changes in Blood Hemodynamics in Patients with Acute Type IIIb Aortic Dissection Treated with TEVAR. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: We aimed to verify the accuracy of the Computational Fluid Dynamics (CFD) algorithm for blood flow reconstruction for type IIIb aortic dissection (TBAD) before and after thoracic endovascular aortic repair (TEVAR). Methods: We made 3D models of the aorta and its branches using pre- and post-operative CT data from five patients treated for TBAD. The CFD technique was used to quantify the displacement forces acting on the aortic wall in the areas of endograft, mass flow rate/velocity and wall shear stress (WSS). Calculated results were verified with ultrasonography (USG-Doppler) data. Results: CFD results indicated that the TEVAR procedure caused a 7-fold improvement in overall blood flow through the aorta (p = 0.0001), which is in line with USG-Doppler data. A comparison of CFD results and USG-Doppler data indicated no significant change in blood flow through the analysed arteries. CFD also showed a significant increase in flow rate for thoracic trunk and renal arteries, which was in accordance with USG-Doppler data (accuracy 90% and 99.9%). Moreover, we observed a significant decrease in WSS values within the whole aorta after TEVAR compared to pre-TEVAR (1.34 ± 0.20 Pa vs. 3.80 ± 0.59 Pa, respectively, p = 0.0001). This decrease was shown by a significant reduction in WSS and WSS contours in the thoracic aorta (from 3.10 ± 0.27 Pa to 1.34 ± 0.11Pa, p = 0.043) and renal arteries (from 4.40 ± 0.25 Pa to 1.50 ± 0.22 Pa p = 0.043). Conclusions: Post-operative remodelling of the aorta after TEVAR for TBAD improved hemodynamic patterns reflected by flow, velocity and WSS with an accuracy of 99%.
Collapse
|
22
|
Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics after Carotid Artery Stenosis Operation: A Case Study. ACTA ACUST UNITED AC 2018; 54:medicina54030042. [PMID: 30344273 PMCID: PMC6122108 DOI: 10.3390/medicina54030042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
Background and objectives: Brain ischemic stroke is caused by impaired or absolutely blocked blood flow into the brain regions. Despite the large number of possible origins, there is no general strategy for preventive treatment. In this paper, we aimed to predict the hemodynamics in a patient who experienced a critical stenosis operation in the carotid artery. This is a unique study where we used medical data together with the computational fluid (CFD) technique not to plan the surgery, but to predict its outcome. Materials and Methods: AngioCT data and blood perfusion of brain tissue (CT-perfusion) together with CFD technique were applied for stroke formation reconstruction in different clinical conditions. With the use of self-made semiautomatic algorithm for image processing and 3DDoctror software, 3D-vascular geometries before and after surgical intervention were reconstructed. As the paper is focused on the analysis of stroke appearance, apparent stroke was simulated as higher and lower pressure values in the cranial part due to different outcomes of the surgical intervention. This allowed to investigate the influence of spatial configuration and pressure values on blood perfusion in the analyzed circulatory system. Results: Application of CFD simulations for blood flow reconstruction for clinical conditions in the circulatory system accomplished on average 98.5% and 98.7% accuracy for CFD results compared to US-Doppler before and after surgical intervention, respectively. Meanwhile, CFD results compared to CT-perfusion indicated an average 89.7% and 92.8% accuracy before and after surgical intervention, respectively. Thus, the CFD is a reliable approach for predicting the patient hemodynamics, as it was confirmed by postoperative data. Conclusions: Our study indicated that the application of CFD simulations for blood flow reconstruction for clinical conditions in circulatory system reached 98% and 90% accuracy for US-Doppler and CT-perfusion, respectively. Therefore, the proposed method might be used as a tool for reconstruction of specific patients' hemodynamics after operation of critical stenosis in the carotid artery. However, further studies are necessary to confirm its usefulness in clinical practice.
Collapse
|
23
|
Yin X, Huang X, Li Q, Li L, Niu P, Cao M, Guo F, Li X, Tan W, Huo Y. Hepatic Hemangiomas Alter Morphometry and Impair Hemodynamics of the Abdominal Aorta and Primary Branches From Computer Simulations. Front Physiol 2018; 9:334. [PMID: 29674973 PMCID: PMC5895747 DOI: 10.3389/fphys.2018.00334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/16/2018] [Indexed: 01/25/2023] Open
Abstract
Background: The formation of hepatic hemangiomas (HH) is associated with VEGF and IL-7 that alter conduit arteries and small arterioles. To our knowledge, there are no studies to investigate the effects of HH on the hemodynamics in conduit arteries. The aim of the study is to perform morphometric and hemodynamic analysis in abdominal conduit arteries and bifurcations of HH patients and controls. Methods: Based on morphometry reconstructed from CT images, geometrical models were meshed with prismatic elements for the near wall region and tetrahedral and hexahedral elements for the core region. Simulations were performed for computation of the non-Newtonian blood flow using the Carreau-Yasuda model, based on which multiple hemodynamic parameters were determined. Results: There was an increase of the lumen size, diameter ratio, and curvature in the abdominal arterial tree of HH patients as compared with controls. This significantly increased the surface area ratio of low time-averaged wall shear stress (i.e., SAR-TAWSS =Surface areaTAWSS≤4 dynes·cm−2Total surface area× 100%) (24.1 ± 7.9 vs. 5 ± 6%, 11.6 ± 12.8 vs. < 0.1%, and 44.5 ± 9.2 vs. 21 ± 24% at hepatic bifurcations, common hepatic arteries, and abdominal aortas, respectively, between HH and control patients). Conclusions: Morphometric changes caused by HH significantly deteriorated the hemodynamic environment in abdominal conduit arteries and bifurcations, which could be an important risk factor for the incidence and progression of vascular diseases.
Collapse
Affiliation(s)
- Xiaoping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Xu Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Qiao Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Minglu Cao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Fei Guo
- College of Medicine, Hebei University, Baoding, China
| | - Xuechao Li
- College of Medicine, Hebei University, Baoding, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China.,Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,College of Medicine, Hebei University, Baoding, China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| |
Collapse
|
24
|
Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Polańczyk A, Strzelecki M, Woźniak T, Szubert W, Stefańczyk L. 3D Blood Vessels Reconstruction Based on Segmented CT Data for Further Simulations of Hemodynamic in Human Artery Branches. FOUNDATIONS OF COMPUTING AND DECISION SCIENCES 2017. [DOI: 10.1515/fcds-2017-0018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
We aimed at the reconstruction of the branches of human aortic arch for blood perfusion analysis used later in the Computational Fluid Dynamic (CFD). The reconstruction was performed based on segmentation results obtained from CT data. Two segmentation algorithms, region growing and level set were implemented. Obtained binary segmentation results were next evaluated by the expert and corrected if needed. The final reconstruction was used for preparation of a numerical grid and for further calculation of blood hemodynamic. The collected data composed of blood velocity and blood flow rate in function of time were compared with USG-Doppler data. Results demonstrate that proposed algorithm may be useful for initial reconstruction of human cardiac system, however its accuracy needs to be improved as further manual corrections are still needed.
Collapse
Affiliation(s)
- Andrzej Polańczyk
- Department of Heat and Mass Transfer, Lodz University of Technology, Wólczańska 213, 90-924 Łódź , Poland
| | - Michał Strzelecki
- Lodz University of Technology, Wólczańska 211/215, 90-924 Łódź , Poland
| | - Tomasz Woźniak
- Lodz University of Technology, Wólczańska 211/215, 90-924 Łódź , Poland
| | - Wojciech Szubert
- Department of Diagnostic Imaging Medical University of Lodz, Kopcińskiego 22, 90-154 Łódź , Poland
| | - Ludomir Stefańczyk
- Department of Diagnostic Imaging Medical University of Lodz, Kopcińskiego 22, 90-154 Łódź , Poland
| |
Collapse
|
26
|
A new approach for the pre-clinical optimization of a spatial configuration of bifurcated endovascular prosthesis placed in abdominal aortic aneurysms. PLoS One 2017; 12:e0182717. [PMID: 28793343 PMCID: PMC5549977 DOI: 10.1371/journal.pone.0182717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 07/24/2017] [Indexed: 11/19/2022] Open
Abstract
Complexity of the spatial configuration of an aortic implant with bifurcation in the distal part is related to changes in blood hemodynamic in the area of bifurcation which may disturb blood flow and lead to thrombus formation. This study was designed to characterize parameters which define spatial configuration of an aortic implant for which the risk of thrombus formation is the smallest. We used AngioCT data from 74 patients, aged 55 ±10 years, after endovascular procedure to prepare 3D geometries of stent-grafts. Computational Fluid Dynamics (CFD) simulations were used to reconstruct blood hemodynamic and simulate thrombus formation. Next, geometric parameters of stent-grafts included the ratio of volume of upper part to the bifurcations, the relation of inlet and outlet diameters of a stent-graft and deformations in the iliac part of the stent-graft were analyzed. We also analyzed tortuosities (spiral twisting of the flow around the flow direction) and bends (the largest angulation in distal part of a stent-graft). The CFD results were confronted with AngioCT data to verify if computer generated thrombus appeared in particular patient. Additionally, geometric parameters of analyzed stent-grafts were used to propose a mathematical tool for prediction of thrombus appearance. The results showed that tortuosities and bends of a stent-graft had the highest impact on thrombus formation. Formation of thrombi was observed in 22% to 31% of cases (at blood hematocrit Hct = 40%) even for small values of tortuosities and bends indicating that these parameters are dominant in determining blood clotting. Our calculated results overlapped with clinical data in 80% to 91%. Therefore, we conclude that tortuosities and bends have high impact on thrombus formation and should be under special attention during stent-graft recommendation and patients’ follow-ups.
Collapse
|
27
|
Frolov SV, Sindeev SV, Liepsch D, Balasso A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technol Health Care 2017; 24:317-33. [PMID: 26835725 DOI: 10.3233/thc-161132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND According to the clinical data, flow conditions play a major role in the genesis of intracranial aneurysms. The disorder of the flow structure is the cause of damage of the inner layer of the vessel wall, which leads to the development of cerebral aneurysms. Knowledge of the alteration of the flow field in the aneurysm region is important for treatment. OBJECTIVE The aim is to study quantitatively the flow structure in an patient-specific aneurysm model of the internal carotid artery using both experimental and computational fluid dynamics (CFD) methods with Newtonian and non-Newtonian fluids. METHODS A patient-specific geometry of aneurysm of the internal carotid artery was used. Patient data was segmented and smoothed to obtain geometrical model. An elastic true-to-scale silicone model was created with stereolithography. For initial investigation of the blood flow, the flow was visualized by adding particles into the silicone model. The precise flow velocity measurements were done using 1D Laser Doppler Anemometer with a spatial resolution of 50 μ m and a temporal resolution of 1 ms. The local velocity measurements were done at a distance of 4 mm to each other. A fluid with non-Newtonian properties was used in the experiment. The CFD simulations for unsteady-state problem were done using constructed hexahedral mesh for Newtonian and non-Newtonian fluids. RESULTS Using 1D laser Doppler Anemometer the minimum velocity magnitude at the end of systole -0.01 m/s was obtained in the aneurysm dome while the maximum velocity 1 m/s was at the center of the outlet segment. On central cross section of the aneurysm the maximum velocity value is only 20% of the average inlet velocity. The average velocity on the cross-section is only 11% of the inlet axial velocity. Using the CFD simulation the wall shear stresses for Newtonian and non-Newtonian fluid at the end of systolic phase (t= 0.25 s) were computed. The wall shear stress varies from 3.52 mPa (minimum value) to 10.21 Pa (maximum value) for the Newtonian fluid. For the non-Newtonian fluid the wall shear stress minimum is 2.94 mPa; the maximum is 9.14 Pa. The lowest value of the wall shear stress for both fluids was obtained at the dome of the aneurysm while the highest wall shear stress was at the beginning of the outlet segment. The vortex in the aneurysm region is unstable during the cardiac cycle. The clockwise rotation of the streamlines at the inlet segment for Newtonian and non-Newtonian fluid is shown. CONCLUSION The results of the present study are in agreement with the hemodynamics theory of aneurysm genesis. Low value of wall shear stress is observed at the aneurysm dome which can cause a rupture of an aneurysm.
Collapse
Affiliation(s)
- S V Frolov
- Department of Biomedical Engineering, Tambov State Technical University, Tambov, Russia
| | - S V Sindeev
- Department of Biomedical Engineering, Tambov State Technical University, Tambov, Russia
| | - D Liepsch
- Department of Mechanical Engineering, Munich University of Applied Sciences, Munich, Germany
| | - A Balasso
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Raptis A, Xenos M, Georgakarakos E, Kouvelos G, Giannoukas A, Matsagkas M. Hemodynamic Profile of Two Aortic Endografts Accounting for Their Postimplantation Position. J Med Device 2017. [DOI: 10.1115/1.4035687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Endovascular aneurysm repair (EVAR) is a clinically effective technique for treating anatomically eligible abdominal aortic aneurysms (AAAs), involving the deployment of an endograft (EG) that is designed to prevent blood leakage in the aneurysmal sac. While most EGs have equivalent operating principles, the hemodynamic environment established by different EGs is not necessarily the same. So, to unveil the post-EVAR hemodynamic properties, we need an EG-specific computational approach that currently lacks from the literature. Endurant and Excluder are two EGs with similar pre-installation designs. We assumed that the flow conditions in the particular EGs do not vary significantly. The hypothesis was tested combining image reconstructions, computational fluid dynamics (CFD), and statistics, taking into account the postimplantation position of the EGs. Ten patients with Endurant EGs and ten patients with Excluder EGs were included in this study. The two groups were matched with respect to the preoperative morphological characteristics of the AAAs. The EG models are derived from image reconstructions of postoperative computed tomography scans. Wall shear stress (WSS), displacement force, velocity, and helicity were calculated in regions of interest within the EG structures, i.e., the main body, the upper and lower part of the limbs. Excluder generated higher WSS compared to Endurant, especially on the lower part of the limbs (p = 0.001). Spatial fluctuations of WSS were observed on the upper part of the Excluder limbs. Higher blood velocity was induced by Excluder in all the regions of interest (p = 0.04, p = 0.01, and p = 0.004). Focal points of secondary flow were detected in the main body of Endurant and the limbs of Excluder. The displacement force acting on the lower part of the Excluder limbs was stronger compared to the Endurant one (p = 0.03). The results showed that two similar EGs implanted in similar AAAs can induce significantly different flow properties. The delineation of the hemodynamic features associated with the various commercially available EGs could further promote the personalization of treatment offered to aneurysmal patients and inspire ideas for the improvement of EG designs in the future.
Collapse
Affiliation(s)
- Anastasios Raptis
- Cardiovascular Surgery Department, Sector of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45500, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mails:
| | - Michalis Xenos
- Department of Mathematics, University of Ioannina, Ioannina 45500, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mail:
| | - Efstratios Georgakarakos
- Department of Vascular Surgery, “Democritus” Medical School, University Hospital of Alexandroupolis, Alexandroupolis 68100, Greece e-mail:
| | - George Kouvelos
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece e-mail:
| | - Athanasios Giannoukas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mail:
| | - Miltiadis Matsagkas
- Department of Vascular Surgery, Faculty of Medicine, University of Thessaly, Larissa 41334, Greece
- Laboratory for Vascular Simulations, Institute of Vascular Diseases, Ioannina 45500, Greece e-mails:
| |
Collapse
|
29
|
Polanczyk A, Podyma M, Trebinski L, Chrzastek J, Zbicinski I, Stefanczyk L. A Novel Attempt to Standardize Results of CFD Simulations Basing on Spatial Configuration of Aortic Stent-Grafts. PLoS One 2016; 11:e0153332. [PMID: 27073907 PMCID: PMC4830540 DOI: 10.1371/journal.pone.0153332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 03/28/2016] [Indexed: 11/24/2022] Open
Abstract
Currently, studies connected with Computational Fluid Dynamic (CFD) techniques focus on assessing hemodynamic of blood flow in vessels in different conditions e.g. after stent-graft’s placement. The paper propose a novel method of standardization of results obtained from calculations of stent-grafts' “pushing forces” (cumulative WSS—Wall Shear Stress), and describes its usefulness in diagnostic process. AngioCT data from 27 patients were used to reconstruct 3D geometries of stent-grafts which next were used to create respective reference cylinders. We made an assumption that both the side surface and the height of a stent-graft and a reference cylinder were equal. The proposed algorithm in conjunction with a stent-graft “pushing forces” on an implant wall, allowed us to determine which spatial configuration of a stent-graft predispose to the higher risk of its migration. For stent-grafts close to cylindrical shape (shape factor φ close to 1) WSS value was about 267Pa, while for stent-grafts different from cylindrical shape (φ close to 2) WSS value was about 635Pa. It was also noticed that deformation in the stent-graft’s bifurcation part impaired blood flow hemodynamic. Concluding the proposed algorithm of standardization proved its usefulness in estimating the WSS values that may be useful in diagnostic process. Angular bends or tortuosity in bifurcations of an aortic implant should be considered in further studies of estimation of the risk of implantation failure.
Collapse
Affiliation(s)
- Andrzej Polanczyk
- Department of Heat and Mass Transfer, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
- * E-mail:
| | - Marek Podyma
- Department of Heat and Mass Transfer, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Lukasz Trebinski
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| | - Jaroslaw Chrzastek
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Zbicinski
- Department of Heat and Mass Transfer, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ludomir Stefanczyk
- Department of Radiology and Diagnostic Imaging, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
30
|
Menichini C, Xu XY. Mathematical modeling of thrombus formation in idealized models of aortic dissection: initial findings and potential applications. J Math Biol 2016; 73:1205-1226. [PMID: 27007280 PMCID: PMC5055578 DOI: 10.1007/s00285-016-0986-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/15/2015] [Indexed: 11/12/2022]
Abstract
Aortic dissection is a major aortic catastrophe with a high morbidity and mortality risk caused by the formation of a tear in the aortic wall. The development of a second blood filled region defined as the “false lumen” causes highly disturbed flow patterns and creates local hemodynamic conditions likely to promote the formation of thrombus in the false lumen. Previous research has shown that patient prognosis is influenced by the level of thrombosis in the false lumen, with false lumen patency and partial thrombosis being associated with late complications and complete thrombosis of the false lumen having beneficial effects on patient outcomes. In this paper, a new hemodynamics-based model is proposed to predict the formation of thrombus in Type B dissection. Shear rates, fluid residence time, and platelet distribution are employed to evaluate the likelihood for thrombosis and to simulate the growth of thrombus and its effects on blood flow over time. The model is applied to different idealized aortic dissections to investigate the effect of geometric features on thrombus formation. Our results are in qualitative agreement with in-vivo observations, and show the potential applicability of such a modeling approach to predict the progression of aortic dissection in anatomically realistic geometries.
Collapse
Affiliation(s)
- Claudia Menichini
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK.
| |
Collapse
|
31
|
Lei Y, Chen M, Xiong G, Chen J. Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm. J Biomech 2015; 48:3312-22. [DOI: 10.1016/j.jbiomech.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|