1
|
Liu J, Huang H, Xu P, Wang L, Liu Z, Fan Y. Damage evaluation and life prediction of pilot’s intervertebral disc based on continuum damage mechanics. INTERNATIONAL JOURNAL OF FATIGUE 2025; 193:108781. [DOI: 10.1016/j.ijfatigue.2024.108781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Lin M, Paul R, Liao X, Doulgeris J, Menzer EL, Dhar UK, Tsai CT, Vrionis FD. A New Method to Evaluate Pressure Distribution Using a 3D-Printed C2-C3 Cervical Spine Model with an Embedded Sensor Array. SENSORS (BASEL, SWITZERLAND) 2023; 23:9547. [PMID: 38067922 PMCID: PMC10708625 DOI: 10.3390/s23239547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Cervical degenerative disc diseases such as myelopathy and radiculopathy often require conventional treatments like artificial cervical disc replacement or anterior cervical discectomy and fusion (ACDF). When designing a medical device, like the stand-alone cage, there are many design inputs to consider. However, the precise biomechanics of the force between the vertebrae and implanted devices under certain conditions require further investigation. In this study, a new method was developed to evaluate the pressure between the vertebrae and implanted devices by embedding a sensor array into a 3D-printed C2-C3 cervical spine. The 3D-printed cervical spine model was subjected to a range of axial loads while under flexion, extension, bending and compression conditions. Cables were used for the application of a preload and a robotic arm was used to recreate the natural spine motions (flexion, extension, and bending). To verify and predict the total pressure between the vertebrae and the implanted devices, a 3D finite element (FE) numerical mathematical model was developed. A preload was represented by applying 22 N of force on each of the anterior tubercles for the C2 vertebra. The results of this study suggest that the sensor is useful in identifying static pressure. The pressure with the robot arm was verified from the FE results under all conditions. This study indicates that the sensor array has promising potential to reduce the trial and error with implants for various surgical procedures, including multi-level artificial cervical disk replacement and ACDF, which may help clinicians to reduce pain, suffering, and costly follow-up procedures.
Collapse
Affiliation(s)
- Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (R.P.); (U.K.D.); (C.-T.T.)
| | - Rudy Paul
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (R.P.); (U.K.D.); (C.-T.T.)
| | - Xinqin Liao
- Department of Electronic Science, Xiamen University, Xiamen 361005, China;
| | - James Doulgeris
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (R.P.); (U.K.D.); (C.-T.T.)
| | - Emma Lilly Menzer
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Utpal Kanti Dhar
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (R.P.); (U.K.D.); (C.-T.T.)
| | - Chi-Tay Tsai
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (R.P.); (U.K.D.); (C.-T.T.)
| | - Frank D. Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL 33486, USA
| |
Collapse
|
3
|
Roman-Liu D, Kamińska J, Tokarski T. Differences in lumbar spine intradiscal pressure between standing and sitting postures: a comprehensive literature review. PeerJ 2023; 11:e16176. [PMID: 37872945 PMCID: PMC10590571 DOI: 10.7717/peerj.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023] Open
Abstract
Background Musculoskeletal disorders (MSDs), especially in the lumbar spine, are a leading concern in occupational health. Work activities associated with excessive exposure are a source of risk for MSDs. The optimal design of workplaces requires changes in both sitting and standing postures. In order to secure such a design scientifically proved quantitative data are needed that would allow for the assessment of differences in spine load due to body posture and/or exerted force. Intradiscal pressure (IP) measurement in the lumbar spine is the most direct method of estimating spinal loads. Hence, this study aims at the quantitative evaluation of differences in lumbar spine load due to body posture and exerted forces, based on IP reported in publications obtained from a comprehensive review of the available literature. Methodology In order to collect data from studies measuring IP in the lumbar spine, three databases were searched. Studies with IP for living adults, measured in various sitting and standing postures, where one of these was standing upright, were included in the analysis. For data to be comparable between studies, the IP for each position was referenced to upright standing. Where different studies presented IP for the same postures, those relative IPs (rIP) were merged. Then, an analysis of the respective outcomes was conducted to find the possible relationship of IPs dependent on a specific posture. Results A preliminary analysis of the reviewed papers returned nine items fulfilling the inclusion and exclusion criteria. After merging relative IPs from different studies, rIP for 27 sitting and 26 standing postures was yielded. Some of the data were useful for deriving mathematical equations expressing rIP as a function of back flexion angle and exerted force in the form of a second degree polynomial equation for the standing and sitting positions. The equations showed that for the standing posture, the increase in IP with increasing back flexion angle is steeper when applying an external force than when maintaining body position only. In a sitting position with the back flexed at 20°, adding 10 kg to each hand increases the IP by about 50%. According to the equations developed, for back flexion angles less than 20°, the IP is greater in sitting than in standing. When the angle is greater than 20°, the IP in the sitting position is less than in the standing position at the same angle of back flexion. Conclusions Analysis of the data from the reviewed papers showed that: sitting without support increases IP by about 30% in relation to upright standing; a polynomial of the second degree defines changes in IP as a function of back flexion for for both postures. There are differences in the pattern of changes in IP with a back flexion angle between sitting and standing postures, as back flexion in standing increases IP more than in sitting.
Collapse
Affiliation(s)
- Danuta Roman-Liu
- Ergonomics, Central Institute for Labour Protection–National Research Institute (CIOP-PIB), Warsaw, Poland
| | - Joanna Kamińska
- Ergonomics, Central Institute for Labour Protection–National Research Institute (CIOP-PIB), Warsaw, Poland
| | - Tomasz Tokarski
- Ergonomics, Central Institute for Labour Protection–National Research Institute (CIOP-PIB), Warsaw, Poland
| |
Collapse
|
4
|
In vivo measurement of intradiscal pressure changes related to thrust and non-thrust spinal manipulation in an animal model: a pilot study. Chiropr Man Therap 2022; 30:36. [PMID: 36068588 PMCID: PMC9446573 DOI: 10.1186/s12998-022-00445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The intervertebral disc is a known back pain generator and is frequently the focus of spinal manipulative therapy evaluation and treatment. The majority of our current knowledge regarding intradiscal pressure (IDP) changes related to spinal manual therapy involves cadaveric studies with their inherent limitations. Additional in vivo animal models are needed to investigate intervertebral disc physiological and molecular mechanisms related to spinal manipulation and spinal mobilization treatment for low back disorders. METHODS Miniature pressure catheters (Millar SPR-1000) were inserted into either the L4-L5 or L5-L6 intervertebral disc of 3 deeply anesthetized adult cats (Oct 2012-May 2013). Changes in IDP were recorded during delivery of instrument-assisted spinal manipulation (Activator V® and Pulstar®) and motorized spinal flexion with/without manual spinous process contact. RESULTS Motorized flexion of 30° without spinous contact decreased IDP of the L4-L5 disc by ~ 2.9 kPa, while physical contact of the L4 spinous process decreased IDP an additional ~ 1.4 kPa. Motorized flexion of 25° with L5 physical contact in a separate animal decreased IDP of the L5-L6 disc by ~ 1.0 kPa. Pulstar® impulses (setting 1-3) increased IDP of L4-L5 and L5-L6 intervertebral discs by ~ 2.5 to 3.0 kPa. Activator V® (setting 1-4) impulses increased L4-L5 IDP to a similar degree. Net changes in IDP amplitudes remained fairly consistent across settings on both devices regardless of device setting suggesting that viscoelastic properties of in vivo spinal tissues greatly dampen superficially applied manipulative forces prior to reaching deep back structures such as the intervertebral disc. CONCLUSIONS This study marks the first time that feline in vivo changes in IDP have been reported using clinically available instrument-assisted spinal manipulation devices and/or spinal mobilization procedures. The results of this pilot study indicate that a feline model can be used to investigate IDP changes related to spinal manual therapy mechanisms as well as the diminution of these spinal manipulative forces due to viscoelastic properties of the surrounding spinal tissues. Additional investigation of IDP changes is warranted in this and/or other in vivo animal models to provide better insights into the physiological effects and mechanisms of spinal manual therapy at the intervertebral disc level.
Collapse
|
5
|
Yang M, Xiang D, Wang S, Liu W. In Vitro Studies for Investigating Creep of Intervertebral Discs under Axial Compression: A Review of Testing Environment and Results. MATERIALS 2022; 15:ma15072500. [PMID: 35407833 PMCID: PMC9000064 DOI: 10.3390/ma15072500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/06/2023]
Abstract
Creep responses of intervertebral discs (IVDs) are essential for spinal biomechanics clarification. Yet, there still lacks a well-recognized investigation protocol for this phenomenon. Current work aims at providing researchers with an overview of the in vitro creep tests reported by previous studies, specifically specimen species, testing environment, loading regimes and major results, based on which a preliminary consensus that may guide future creep studies is proposed. Specimens used in creep studies can be simplified as a “bone–disc–bone” structure where three mathematical models can be adopted for describing IVDs’ responses. The preload of 10–50 N for 30 min or three cycles followed by 4 h-creep under constant compression is recommended for ex vivo simulation of physiological condition of long-time sitting or lying. It is worth noticing that species of specimens, environment temperature and humidity all have influences on biomechanical behaviors, and thus are summarized and compared through the literature review. All factors should be carefully set according to a guideline before tests are conducted to urge comparable results across studies. To this end, this review also provides a guideline, as mentioned before, and specific steps that might facilitate the community of biomechanics to obtain more repeatable and comparable results from both natural specimens and novel biomaterials.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (S.W.); (W.L.)
| |
Collapse
|
6
|
Lin M, Abd MA, Taing A, Tsai CT, Vrionis FD, Engeberg ED. Robotic Replica of a Human Spine Uses Soft Magnetic Sensor Array to Forecast Intervertebral Loads and Posture after Surgery. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010212. [PMID: 35009754 PMCID: PMC8749580 DOI: 10.3390/s22010212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 05/07/2023]
Abstract
Cervical disc implants are conventional surgical treatments for patients with degenerative disc disease, such as cervical myelopathy and radiculopathy. However, the surgeon still must determine the candidacy of cervical disc implants mainly from the findings of diagnostic imaging studies, which can sometimes lead to complications and implant failure. To help address these problems, a new approach was developed to enable surgeons to preview the post-operative effects of an artificial disc implant in a patient-specific fashion prior to surgery. To that end, a robotic replica of a person's spine was 3D printed, modified to include an artificial disc implant, and outfitted with a soft magnetic sensor array. The aims of this study are threefold: first, to evaluate the potential of a soft magnetic sensor array to detect the location and amplitude of applied loads; second, to use the soft magnetic sensor array in a 3D printed human spine replica to distinguish between five different robotically actuated postures; and third, to compare the efficacy of four different machine learning algorithms to classify the loads, amplitudes, and postures obtained from the first and second aims. Benchtop experiments showed that the soft magnetic sensor array was capable of precisely detecting the location and amplitude of forces, which were successfully classified by four different machine learning algorithms that were compared for their capabilities: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), and Artificial Neural Network (ANN). In particular, the RF and ANN algorithms were able to classify locations of loads applied 3.25 mm apart with 98.39% ± 1.50% and 98.05% ± 1.56% accuracies, respectively. Furthermore, the ANN had an accuracy of 94.46% ± 2.84% to classify the location that a 10 g load was applied. The artificial disc-implanted spine replica was subjected to flexion and extension by a robotic arm. Five different postures of the spine were successfully classified with 100% ± 0.0% accuracy with the ANN using the soft magnetic sensor array. All results indicated that the magnetic sensor array has promising potential to generate data prior to invasive surgeries that could be utilized to preoperatively assess the suitability of a particular intervention for specific patients and to potentially assist the postoperative care of people with cervical disc implants.
Collapse
Affiliation(s)
- Maohua Lin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (M.A.A.); (C.-T.T.)
| | - Moaed A. Abd
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (M.A.A.); (C.-T.T.)
| | - Alex Taing
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Chi-Tay Tsai
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (M.A.A.); (C.-T.T.)
| | - Frank D. Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL 33486, USA
- Correspondence: (F.D.V.); (E.D.E.)
| | - Erik D. Engeberg
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.L.); (M.A.A.); (C.-T.T.)
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (F.D.V.); (E.D.E.)
| |
Collapse
|
7
|
Azadi A, Arjmand N. A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects. J Biomech 2021; 121:110430. [PMID: 33873115 DOI: 10.1016/j.jbiomech.2021.110430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022]
Abstract
Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar (T12-S1) FE model in post-fusion conditions. Sixteen simulated fusion surgeries, performed on cadaveric specimens using various testing and loading conditions, were modeled by this FE model. Predictions for adjacent segment range of motion (RoM) and intradiscal pressure (IDP) were compared with those obtained from the corresponding in vitro tests. Overall, 70% of the predicted adjacent segment RoMs were within the range of in vitro data for both intact and post-fusion conditions. Correlation (r) values between model and in vitro findings for the adjacent segment RoMs were positive and greater than 0.84. Most of the predicted IDPs were, however, out of the narrow range of in vitro IDPs at the adjacent segments but with great positive correlations (r ≥ 0.89). FE modeling studies investigating the effect of fusion surgery on in vivo adjacent segment biomechanics are encouraged to use post-surgery in vitro data to validate their FE model.
Collapse
Affiliation(s)
- A Azadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
8
|
Costi JJ, Ledet EH, O'Connell GD. Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence. JOR Spine 2021; 4:e1138. [PMID: 33778410 PMCID: PMC7984003 DOI: 10.1002/jsp2.1138] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Biomechanical testing methodologies for the spine have developed over the past 50 years. During that time, there have been several paradigm shifts with respect to techniques. These techniques evolved by incorporating state-of-the-art engineering principles, in vivo measurements, anatomical structure-function relationships, and the scientific method. Multiple parametric studies have focused on the effects that the experimental technique has on outcomes. As a result, testing methodologies have evolved, but there are no standard testing protocols, which makes the comparison of findings between experiments difficult and conclusions about in vivo performance challenging. In 2019, the international spine research community was surveyed to determine the consensus on spine biomechanical testing and if the consensus opinion was consistent with the scientific evidence. More than 80 responses to the survey were received. The findings of this survey confirmed that while some methods have been commonly adopted, not all are consistent with the scientific evidence. This review summarizes the scientific literature, the current consensus, and the authors' recommendations on best practices based on the compendium of available evidence.
Collapse
Affiliation(s)
- John J. Costi
- Biomechanics and Implants Research Group, Medical Device Research Institute, College of Science and EngineeringFlinders UniversityAdelaideAustralia
| | - Eric H. Ledet
- Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyNew YorkUSA
- Research and Development ServiceStratton VA Medical CenterAlbanyNew YorkUSA
| | - Grace D. O'Connell
- Department of Mechanical EngineeringUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
- Department of Orthopaedic SurgeryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
9
|
Rajaee MA, Arjmand N, Shirazi-Adl A. A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks. J Biomech 2021; 119:110331. [PMID: 33631665 DOI: 10.1016/j.jbiomech.2021.110331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 11/18/2022]
Abstract
Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled model predicted L4-L5 intradiscal pressures (R2 ≅ 0.97, RMSE ≅ 0.27 MPa) and L1-S1 centers of rotation (CoRs) in agreement to in vivo data. Differences in model predictions grew at larger trunk flexion angles; at the peak (80°) flexion the coupled model predicted, compared to the hybrid model, much smaller global/local muscle forces (~38%), segmental (~44%) and disc (~22%) compression forces but larger segmental (~9%) and disc (~17%) shear loads, ligament forces at the lower lumbar levels (by up to 57%) and facet forces at all levels. The spherical/beam joints models predicted much greater muscle forces and segmental loads under larger flexion angles. Unlike the spherical joints model with fixed CoRs, the beam joints model predicted CoRs closer (RMSE = 2.3 mm in flexion tasks) to those of the coupled model. The coupled model offers a great potential for future studies towards improvement of surgical techniques, management of musculoskeletal injuries and subject-specific simulations.
Collapse
Affiliation(s)
- M A Rajaee
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - N Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - A Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, Polytechnique, Montréal, Québec, Canada
| |
Collapse
|
10
|
Paul CPL, Emanuel KS, Kingma I, van der Veen AJ, Holewijn RM, Vergroesen PPA, van de Ven PM, Mullender MG, Helder MN, Smit TH. Changes in Intervertebral Disk Mechanical Behavior During Early Degeneration. J Biomech Eng 2018; 140:2678255. [PMID: 29801164 DOI: 10.1115/1.4039890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/08/2022]
Abstract
Intervertebral disk (IVD) degeneration is commonly described by loss of height and hydration. However, in the first stage of IVD degeneration, this loss has not yet occurred. In the current study, we use an ex vivo degeneration model to analyze the changes in IVDs mechanical behavior in the first phase of degeneration. We characterize these changes by stretched-exponential fitting, and suggest the fitted parameters as markers for early degeneration. Enzymatic degeneration of healthy lumbar caprine IVDs was induced by injecting 100 μL of Chondroïtinase ABC (Cabc) into the nucleus. A no-intervention and phosphate buffered saline (PBS) injected group were used as controls. IVDs were cultured in a bioreactor for 20 days under diurnal, simulated-physiological loading (SPL) conditions. Disk deformation was continuously monitored. Changes in disk height recovery behavior were quantified using stretched-exponential fitting. Disk height, histological sections, and water- and glycosaminoglycan (GAG)-content measurements were used as gold standards for the degenerative state. Cabc injection caused significant GAG loss from the nucleus and had detrimental effects on poro-elastic mechanical properties of the IVDs. These were progressive over time, with a propensity toward more linear recovery behavior. On histological sections, both PBS and Cabc injected IVDs showed moderate degeneration. A small GAG loss yields changes in IVD recovery behavior, which can be quantified with stretched-exponential fitting. Parameters changed significantly compared to control. Studies on disk degeneration and biomaterial engineering for degenerative disk disease (DDD) could benefit from focusing on IVD biomechanical behavior rather than height and water-content, as a marker for early disk degeneration.
Collapse
Affiliation(s)
- Cornelis P L Paul
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands
| | - Kaj S Emanuel
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands
| | - Idsart Kingma
- Department of Human Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam 1081 BT, The Netherlands
| | - Albert J van der Veen
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Roderick M Holewijn
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Pieter-Paul A Vergroesen
- Department of Orthopedic Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam 1081 BT, The Netherlands
| | - Margriet G Mullender
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery, VU University Medical Center, Amsterdam 1081 HV, The Netherlands
| | - Theodoor H Smit
- Department of Orthopedic Surgery, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam 1105 AZ, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands e-mail:
| |
Collapse
|
11
|
Khoddam-Khorasani P, Arjmand N, Shirazi-Adl A. Trunk Hybrid Passive–Active Musculoskeletal Modeling to Determine the Detailed T12–S1 Response Under In Vivo Loads. Ann Biomed Eng 2018; 46:1830-1843. [DOI: 10.1007/s10439-018-2078-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
|
12
|
Temporal and spatial variations of pressure within intervertebral disc nuclei. J Mech Behav Biomed Mater 2018; 79:309-313. [DOI: 10.1016/j.jmbbm.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/24/2022]
|
13
|
Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. J Biomech 2018; 70:16-25. [DOI: 10.1016/j.jbiomech.2017.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
14
|
Osmosis and viscoelasticity both contribute to time-dependent behaviour of the intervertebral disc under compressive load: A caprine in vitro study. J Biomech 2018; 70:10-15. [DOI: 10.1016/j.jbiomech.2017.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/07/2017] [Accepted: 10/15/2017] [Indexed: 01/08/2023]
|
15
|
Reitmaier S, Graichen F, Shirazi-Adl A, Schmidt H. Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research. J Bone Joint Surg Am 2017; 99:e102. [PMID: 28976436 DOI: 10.2106/jbjs.17.00172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.
Collapse
Affiliation(s)
- Sandra Reitmaier
- 1Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Berlin, Germany 2École Polytechnique, Montréal, Canada
| | | | | | | |
Collapse
|
16
|
Tuan Dao T. Hybrid Rigid-Deformable Model for Prediction of Neighboring Intervertebral Disk Loads During Flexion Movement After Lumbar Interbody Fusion at L3-4 Level. J Biomech Eng 2017; 139:2594573. [PMID: 27996077 DOI: 10.1115/1.4035483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/08/2022]
Abstract
Knowledge of spinal loads in neighboring disks after interbody fusion plays an important role in the clinical decision of this treatment as well as in the elucidation of its effect. However, controversial findings are still noted in the literature. Moreover, there are no existing models for efficient prediction of intervertebral disk stresses within annulus fibrosus (AF) and nucleus pulposus (NP) regions. In this present study, a new hybrid rigid-deformable modeling workflow was established to quantify the mechanical stress behaviors within AF and NP regions of the L1-2, L2-3, and L4-5 disks after interbody fusion at L3-4 level. The changes in spinal loads were compared with results of the intact model without interbody fusion. The fusion outcomes revealed maximal stress changes (10%) in AF region of L1-2 disk and in NP region of L2-3 disk. The minimal stress change (1%) is noted at the NP region of the L1-2 disk. The validation of simulation outcomes of fused and intact lumbar spine models against those of other computational models and in vivo measurements showed good agreements. Thus, this present study may be used as a novel design guideline for a specific implant and surgical scenario of the lumbar spine disorders.
Collapse
Affiliation(s)
- Tien Tuan Dao
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne CS 60 319, France e-mail:
| |
Collapse
|
17
|
Schmidt H, Reitmaier S, Graichen F, Shirazi-Adl A. Review of the fluid flow within intervertebral discs - How could in vitro measurements replicate in vivo? J Biomech 2016; 49:3133-3146. [PMID: 27651134 DOI: 10.1016/j.jbiomech.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 11/18/2022]
Abstract
By maintaining a balance between external mechanical loads and internal osmotic pressure, fluid content of intervertebral discs constantly alters causing fluctuations in disc hydration, height, diameter and pressure that govern disc temporal response. This paper reviews and discusses the relevant findings of earlier studies on the disc fluid flow with the aim to understand and remedy discrepancies between in vivo and in vitro observations. New results of finite element model studies are also exploited in order to help identify the likely causes for such differences and underlying mechanisms observed in vitro. In vivo measurements of changes in spinal height and disc fluid content/pressure via stadiometry, magnetic resonance imaging and intradiscal pressure measurements have been carried out. They have demonstrated that the disc volume, fluid content, height and nucleus pressure alter depending to a large extent on prior-current external load conditions. Although the diurnal loading lasts on average nearly twice longer than the subsequent resting (16 vs. 8h), the disc completely recovers its height and volume during the latter period through fluid inflow. In view of much longer periods required to recover disc height and pressure in vitro in ovine, porcine, caprine, bovine and rat discs, concerns have been raised on the fluid inflow through the endplates that might be hampered by clogged blood vessels post mortem. Analyses of discrepancies in the flow-dependent recoveries in vivo and in vitro highlight an excessive fluid content in the latter as a likely cause. To replicate in vivo conditions as closely as possible in vitro, preparation and preconditioning of specimens and/or pressure and osmolarity of the culture media in which specimens are immersed should hence be designed in a manner as to diminish disc hydration level and/or fluid transport.
Collapse
Affiliation(s)
- Hendrik Schmidt
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Sandra Reitmaier
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Friedmar Graichen
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
18
|
Dao TT. Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement. J Med Biol Eng 2016. [DOI: 10.1007/s40846-016-0156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Shirazi-Adl A, Schmidt H, Kingma I. Spine loading and deformation - From loading to recovery. J Biomech 2016; 49:813-816. [PMID: 26924656 DOI: 10.1016/j.jbiomech.2016.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Aboulfazl Shirazi-Adl
- Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, Montréal, Canada.
| | - Hendrik Schmidt
- Julius Wolff Institute Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Idsart Kingma
- Research Institute MOVE, Department of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|