1
|
Mirza A, Hsu CPD, Rodriguez A, Alvarez P, Lou L, Sey M, Agarwal A, Ramaswamy S, Hutcheson J. Computational Model for Early-Stage Aortic Valve Calcification Shows Hemodynamic Biomarkers. Bioengineering (Basel) 2024; 11:955. [PMID: 39451331 PMCID: PMC11504039 DOI: 10.3390/bioengineering11100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Heart disease is a leading cause of mortality, with calcific aortic valve disease (CAVD) being the most prevalent subset. Being able to predict this disease in its early stages is important for monitoring patients before they need aortic valve replacement surgery. Thus, this study explored hydrodynamic, mechanical, and hemodynamic differences in healthy and very mildly calcified porcine small intestinal submucosa (PSIS) bioscaffold valves to determine any notable parameters between groups that could, possibly, be used for disease tracking purposes. Three valve groups were tested: raw PSIS as a control and two calcified groups that were seeded with human valvular interstitial and endothelial cells (VICs/VECs) and cultivated in calcifying media. These two calcified groups were cultured in either static or bioreactor-induced oscillatory flow conditions. Hydrodynamic assessments showed metrics were below thresholds associated for even mild calcification. Young's modulus, however, was significantly higher in calcified valves when compared to raw PSIS, indicating the morphological changes to the tissue structure. Fluid-structure interaction (FSI) simulations agreed well with hydrodynamic results and, most notably, showed a significant increase in time-averaged wall shear stress (TAWSS) between raw and calcified groups. We conclude that tracking hemodynamics may be a viable biomarker for early-stage CAVD tracking.
Collapse
Affiliation(s)
- Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| | - Chia-Pei Denise Hsu
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| | - Andres Rodriguez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| | - Paulina Alvarez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| | - Lihua Lou
- Department of Mechanical Engineering, Florida International University, Miami, FL 33174, USA; (L.L.); (M.S.); (A.A.)
| | - Matty Sey
- Department of Mechanical Engineering, Florida International University, Miami, FL 33174, USA; (L.L.); (M.S.); (A.A.)
| | - Arvind Agarwal
- Department of Mechanical Engineering, Florida International University, Miami, FL 33174, USA; (L.L.); (M.S.); (A.A.)
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| | - Joshua Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (C.-P.D.H.); (A.R.); (P.A.); (S.R.)
| |
Collapse
|
2
|
Gonzalez BA, Herrera A, Ponce C, Gonzalez Perez M, Hsu CPD, Mirza A, Perez M, Ramaswamy S. Stem Cell-Secreted Allogeneic Elastin-Rich Matrix with Subsequent Decellularization for the Treatment of Critical Valve Diseases in the Young. Bioengineering (Basel) 2022; 9:bioengineering9100587. [PMID: 36290556 PMCID: PMC9598163 DOI: 10.3390/bioengineering9100587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Critical valve diseases in infants have a very poor prognosis for survival. Particularly challenging is for the valve replacement to support somatic growth. From a valve regenerative standpoint, bio-scaffolds have been extensively investigated recently. While bio-scaffold valves facilitate acute valve functionality, their xenogeneic properties eventually induce a hostile immune response. Our goal was to investigate if a bio-scaffold valve could be deposited with tissues derived from allogeneic stem cells, with a specific dynamic culture protocol to enhance the extracellular matrix (ECM) constituents, with subsequent stem cell removal. Porcine small intestinal submucosa (PSIS) tubular-shaped bio-scaffold valves were seeded with human bone marrow-derived mesenchymal stem cells (hBMMSCs), cultured statically for 8 days, and then exposed to oscillatory fluid-induced shear stresses for two weeks. The valves were then safely decellularized to remove the hBMMSCs while retaining their secreted ECM. This de novo ECM was found to include significantly higher (p < 0.05) levels of elastin compared to the ECM produced by the hBMMSCs under standard rotisserie culture. The elastin-rich valves consisted of ~8% elastin compared to the ~10% elastin composition of native heart valves. Allogeneic elastin promotes chemotaxis thereby accelerating regeneration and can support somatic growth by rapidly integrating with the host following implantation. As a proof-of-concept of accelerated regeneration, we found that valve interstitial cells (VICs) secreted significantly more (p < 0.05) collagen on the elastin-rich matrix compared to the raw PSIS bio-scaffold.
Collapse
|
3
|
Zhao Y, Richardson K, Yang R, Bousraou Z, Lee YK, Fasciano S, Wang S. Notch signaling and fluid shear stress in regulating osteogenic differentiation. Front Bioeng Biotechnol 2022; 10:1007430. [PMID: 36277376 PMCID: PMC9581166 DOI: 10.3389/fbioe.2022.1007430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate into various cell types, including osteoblasts, chondrocytes, and adipocytes, which have been utilized extensively in the field of bone tissue engineering and cell-based therapy. Although fluid shear stress plays an important role in bone osteogenic differentiation, the cellular and molecular mechanisms underlying this effect remain poorly understood. Here, a locked nucleic acid (LNA)/DNA nanobiosensor was exploited to monitor mRNA gene expression of hMSCs that were exposed to physiologically relevant fluid shear stress to examine the regulatory role of Notch signaling during osteogenic differentiation. First, the effects of fluid shear stress on cell viability, proliferation, morphology, and osteogenic differentiation were investigated and compared. Our results showed shear stress modulates hMSCs morphology and osteogenic differentiation depending on the applied shear and duration. By incorporating this LNA/DNA nanobiosensor and alkaline phosphatase (ALP) staining, we further investigated the role of Notch signaling in regulating osteogenic differentiation. Pharmacological treatment is applied to disrupt Notch signaling to investigate the mechanisms that govern shear stress induced osteogenic differentiation. Our experimental results provide convincing evidence supporting that physiologically relevant shear stress regulates osteogenic differentiation through Notch signaling. Inhibition of Notch signaling mediates the effects of shear stress on osteogenic differentiation, with reduced ALP enzyme activity and decreased Dll4 mRNA expression. In conclusion, our results will add new information concerning osteogenic differentiation of hMSCs under shear stress and the regulatory role of Notch signaling. Further studies may elucidate the mechanisms underlying the mechanosensitive role of Notch signaling in stem cell differentiation.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Bioengineering, Lehigh University, Bethlehem, PA, United States
| | - Kiarra Richardson
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Rui Yang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Zoe Bousraou
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Yoo Kyoung Lee
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
| | - Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, United States
- *Correspondence: Shue Wang,
| |
Collapse
|
4
|
Hsu CPD, Tchir A, Mirza A, Chaparro D, Herrera RE, Hutcheson JD, Ramaswamy S. Valve Endothelial Cell Exposure to High Levels of Flow Oscillations Exacerbates Valve Interstitial Cell Calcification. Bioengineering (Basel) 2022; 9:bioengineering9080393. [PMID: 36004918 PMCID: PMC9405348 DOI: 10.3390/bioengineering9080393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aortic valve facilitates unidirectional blood flow to the systemic circulation between the left cardiac ventricle and the aorta. The valve’s biomechanical function relies on thin leaflets to adequately open and close over the cardiac cycle. A monolayer of valve endothelial cells (VECs) resides on the outer surface of the aortic valve leaflet. Deeper within the leaflet are sublayers of valve interstitial cells (VICs). Valve tissue remodeling involves paracrine signaling between VECs and VICs. Aortic valve calcification can result from abnormal paracrine communication between these two cell types. VECs are known to respond to hemodynamic stimuli, and, specifically, flow abnormalities can induce VEC dysfunction. This dysfunction can subsequently change the phenotype of VICs, leading to aortic valve calcification. However, the relation between VEC-exposed flow oscillations under pulsatile flow to the progression of aortic valve calcification by VICs remains unknown. In this study, we quantified the level of flow oscillations that VECs were exposed to under dynamic culture and then immersed VICs in VEC-conditioned media. We found that VIC-induced calcification was augmented under maximum flow oscillations, wherein the flow was fully forward for half the cardiac cycle period and fully reversed for the other half. We were able to computationally correlate this finding to specific regions of the aortic valve that experience relatively high flow oscillations and that have been shown to be associated with severe calcified deposits. These findings establish a basis for future investigations on engineering calcified human valve tissues and its potential for therapeutic discovery of aortic valve calcification.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Alexandra Tchir
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Raul E. Herrera
- Miami Cardiac & Vascular Institute, Baptist Health South Florida, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Correspondence: (J.D.H.); (S.R.)
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Correspondence: (J.D.H.); (S.R.)
| |
Collapse
|
5
|
Hsu CPD, Hutcheson JD, Ramaswamy S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. VASCULAR BIOLOGY 2020; 2:R59-R71. [PMID: 32923975 PMCID: PMC7439923 DOI: 10.1530/vb-19-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.
Collapse
Affiliation(s)
- Chia-Pei Denise Hsu
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Joshua D Hutcheson
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | - Sharan Ramaswamy
- Engineering Center, Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| |
Collapse
|
6
|
Gonzalez BA, Perez-Nevarez M, Mirza A, Perez MG, Lin YM, Hsu CPD, Caobi A, Raymond A, Gomez Hernandez ME, Fernandez-Lima F, George F, Ramaswamy S. Physiologically Relevant Fluid-Induced Oscillatory Shear Stress Stimulation of Mesenchymal Stem Cells Enhances the Engineered Valve Matrix Phenotype. Front Cardiovasc Med 2020; 7:69. [PMID: 32509802 PMCID: PMC7248568 DOI: 10.3389/fcvm.2020.00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/07/2020] [Indexed: 11/20/2022] Open
Abstract
Support of somatic growth is a fundamental requirement of tissue-engineered valves. However, efforts thus far have been unable to maintain this support long term. A key event that will determine the valve's long-term success is the extent to which healthy host tissue remodeling can occur on the valve soon after implantation. The construct's phenotypic-status plays a critical role in accelerating tissue remodeling and engineered valve integration with the host via chemotaxis. In the current study, human bone-marrow-derived mesenchymal stem cells were utilized to seed synthetic, biodegradable scaffolds for a period of 8 days in rotisserie culture. Subsequently, cell-seeded scaffolds were exposed to physiologically relevant oscillatory shear stresses (overall mean, time-averaged shear stress, ~7.9 dynes/cm2; overall mean, oscillatory shear index, ~0.18) for an additional 2 weeks. The constructs were found to exhibit relatively augmented endothelial cell expression (CD31; compared to static controls) but concomitantly served to restrict the level of the activated smooth muscle phenotype (α-SMA) and also produced very low stem cell secretion levels of fibronectin (p < 0.05 compared to static and rotisserie controls). These findings suggest that fluid-induced oscillatory shear stresses alone are important in regulating a healthy valve phenotype of the engineered tissue matrix. Moreover, as solid stresses could lead to increased α-SMA levels, they should be excluded from conditioning during the culture process owing to their associated potential risks with pathological tissue remodeling. In conclusion, engineered valve tissues derived from mesenchymal stem cells revealed both a relatively robust valvular phenotype after exposure to physiologically relevant scales of oscillatory shear stress and may thereby serve to accelerate healthy valve tissue remodeling in the host post-implantation.
Collapse
Affiliation(s)
- Brittany A Gonzalez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Manuel Perez-Nevarez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Asad Mirza
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Marcos Gonzalez Perez
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Yih-Mei Lin
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Chia-Pei Denise Hsu
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Allen Caobi
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Andrea Raymond
- Department of Immunology and Nano-Medicine, Florida International University, Miami, FL, United States
| | - Mario E Gomez Hernandez
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Francisco Fernandez-Lima
- Advanced Mass Spectrometry Facility, Florida International University, Miami, FL, United States.,Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Florence George
- Department of Mathematics and Statistics, Florida International University, Miami, FL, United States
| | - Sharan Ramaswamy
- Cardiovascular Therapeutics Laboratory (CV-PEUTICS Lab), Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|
7
|
Isu G, Morbiducci U, De Nisco G, Kropp C, Marsano A, Deriu MA, Zweigerdt R, Audenino A, Massai D. Modeling methodology for defining a priori the hydrodynamics of a dynamic suspension bioreactor. Application to human induced pluripotent stem cell culture. J Biomech 2019; 94:99-106. [PMID: 31376980 DOI: 10.1016/j.jbiomech.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
Abstract
Three-dimensional dynamic suspension is becoming an effective cell culture method for a wide range of bioprocesses, with an increasing number of bioreactors proposed for this purpose. The complex hydrodynamics establishing within these devices affects bioprocess outcomes and efficiency, and usually expensive in vitro trial-and-error experiments are needed to properly set the working parameters. Here we propose a methodology to define a priori the hydrodynamic working parameters of a dynamic suspension bioreactor, selected as a test case because of the complex hydrodynamics characterizing its operating condition. A combination of computational and analytical approaches was applied to generate operational guideline graphs for defining a priori specific working parameters. In detail, 43 simulations were performed under pulsed flow regime to characterize advective transport within the device depending on different operative conditions, i.e., culture medium flow rate and its duty cycle, cultured particle diameter, and initial particle suspension volume. The operational guideline graphs were then used to set specific hydrodynamic working parameters for an in vitro proof-of-principle test, where human induced pluripotent stem cell (hiPSC) aggregates were cultured for 24 h within the bioreactor. The in vitro findings showed that, under the selected pulsed flow regime, sedimentation was avoided, hiPSC aggregate circularity and viability were preserved, and culture heterogeneity was reduced, thus confirming the appropriateness of the a priori method. This methodology has the potential to be adaptable to other dynamic suspension devices to support experimental studies by providing in silico-based a priori knowledge, useful to limit costs and to optimize culture bioprocesses.
Collapse
Affiliation(s)
- Giuseppe Isu
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Department of Surgery and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Giuseppe De Nisco
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Christina Kropp
- Leibniz Research Laboratories for Biotechnology and Artificial Organ, Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anna Marsano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Marco A Deriu
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organ, Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Alberto Audenino
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy
| | - Diana Massai
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Italy.
| |
Collapse
|
8
|
Cardiac Valve Bioreactor for Physiological Conditioning and Hydrodynamic Performance Assessment. Cardiovasc Eng Technol 2018; 10:80-94. [PMID: 30311149 DOI: 10.1007/s13239-018-00382-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Tissue engineered heart valves (TEHV) are being investigated to address the limitations of currently available valve prostheses. In order to advance a wide variety of TEHV approaches, the goal of this study was to develop a cardiac valve bioreactor system capable of conditioning living valves with a range of hydrodynamic conditions as well as capable of assessing hydrodynamic performance to ISO 5840 standards. METHODS A bioreactor system was designed based on the Windkessel approach. Novel features including a purpose-built valve chamber and pressure feedback control were incorporated to maintain asepsis while achieving a range of hydrodynamic conditions. The system was validated by testing hydrodynamic conditions with a bioprosthesis and by operating with cell culture medium for 4 weeks and living cells for 2 weeks. RESULTS The bioreactor system was able to produce a range of pressure and flow conditions from static to resting adult left ventricular outflow tract to pathological including hypertension. The system operated aseptically for 4 weeks and cell viability was maintained for 2 weeks. The system was also able to record the pressure and flow data needed to calculate effective orifice area and regurgitant fraction. CONCLUSIONS We have developed a single bioreactor system that allows for step-wise conditioning protocols to be developed for each unique TEHV design as well as allows for hydrodynamic performance assessment.
Collapse
|
9
|
Castellanos G, Nasim S, Almora DM, Rath S, Ramaswamy S. Stem Cell Cytoskeletal Responses to Pulsatile Flow in Heart Valve Tissue Engineering Studies. Front Cardiovasc Med 2018; 5:58. [PMID: 29922678 PMCID: PMC5996090 DOI: 10.3389/fcvm.2018.00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/15/2018] [Indexed: 01/12/2023] Open
Abstract
Heart valve replacement options remain exceedingly limited for pediatric patients because they cannot accommodate somatic growth. To overcome this shortcoming, heart valve tissue engineering using human bone marrow stem cells (HBMSCs) has been considered a potential solution to the treatment of critical congenital valvular defects. The mechanical environments during in vitro culture are key regulators of progenitor cell fate. Here, we report on alterations in HBMSCs, specifically in their actin cytoskeleton and their nucleus under fluid-induced shear stresses of relevance to heart valves. HBMSCs were seeded in microfluidic channels and were exposed to the following conditions: pulsatile shear stress (PSS), steady shear stress (SS), and no flow controls (n = 4/group). Changes to the actin filament structure were monitored and subsequent gene expression was evaluated. A significant increase (p < 0.05) in the number of actin filaments, filament density and angle (between 30° and 84°), and conversely a significant decrease (p < 0.05) in the length of the filaments were observed when the HBMSCs were exposed to PSS for 48 h compared to SS and no flow conditions. No significant differences in nuclear shape were observed among the groups (p > 0.05). Of particular relevance to valvulogenesis, klf2a, a critical gene in valve development, was significantly expressed only by the PSS group (p < 0.05). We conclude that HBMSCs respond to PSS by alterations to their actin filament structure that are distinct from SS and no flow conditions. These changes coupled with the subsequent gene expression findings suggest that at the cellular level, the immediate effect of PSS is to initiate a unique set of quantifiable cytoskeletal events (increased actin filament number, density and angle, but decrease in filament length) in stem cells, which could be useful in the fine-tuning of in vitro protocols in heart valve tissue engineering.
Collapse
Affiliation(s)
- Glenda Castellanos
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sana Nasim
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Denise M Almora
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sasmita Rath
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Sharan Ramaswamy
- Tissue Engineered Mechanics Imaging and Materials Laboratory, Biomedical Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|