1
|
Yoon D, Vishwanath K, Dankert J, Butler JJ, Azam MT, Gianakos AL, Colville MJ, Lopez SG, Paszek MJ, Reesink HL, Kennedy JG, Bonassar LJ, Irwin RM. Delayed lubricin injection improves cartilage repair tissue quality in an in vivo rabbit osteochondral defect model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636825. [PMID: 39974965 PMCID: PMC11839081 DOI: 10.1101/2025.02.06.636825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Osteochondral lesions (OCL) are common among young patients and often require surgical interventions since cartilage has a poor capacity for self-repair. Bone marrow stimulation (BMS) has been used clinically for decades to treat OCLs, however a persisting challenge with BMS and other cartilage repair strategies is the inferior quality of the resulting fibrocartilaginous repair tissue. Lubrication-based therapies have the potential to improve the quality of cartilage repair tissue as joint lubrication is linked to local cartilage tissue strains and subsequent cellular responses including death and apoptosis. Recently, a full length recombinant human lubricin (rhLubricin) was developed and has been shown to lower friction in cartilage. This study investigated the effect of a single delayed injection of rhLubricin on cartilage repair in an in vivo rabbit OCL model using gross macroscopic evaluation, surface profilometry, histology, and tribology. Moderate improvement in macroscopic scores for cartilage repair were observed. Notably, quantitative analysis of Safranin-O histology showed that rhLubricin treated joints had significantly higher glycosaminoglycan content compared to saline treated joints, and there were no differences in repair integration between groups. Furthermore, rhLubricin treated joints had significantly lower friction coefficients tested across three sliding speeds compared to saline treated joints (rhLubricin: 0.15 ± 0.03 at 0.1 mm/s to 0.12 ± 0.03 at 10 mm/s, Saline: 0.22 ± 0.06 at 0.1 mm/s to 0.19 ± 0.05 at 10 mm/s). Overall, a single delayed injection of rhLubricin improved the quality and lubricating ability of the repair cartilage tissue without inhibiting repair tissue integration.
Collapse
Affiliation(s)
- Donghwan Yoon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | - John Dankert
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - James J. Butler
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Mohammad T. Azam
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Arianna L. Gianakos
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Marshall J. Colville
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - Serafina G. Lopez
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Matthew J. Paszek
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY
| | - Heidi L. Reesink
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - John G. Kennedy
- Foot and Ankle Division, Department of Orthopaedic Surgery, New York University Langone Health, New York, NY
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rebecca M. Irwin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Department of Biomedical Engineering, University of Rochester, Rochester, NY
| |
Collapse
|
2
|
Karami P, Laurent A, Philippe V, Applegate LA, Pioletti DP, Martin R. Cartilage Repair: Promise of Adhesive Orthopedic Hydrogels. Int J Mol Sci 2024; 25:9984. [PMID: 39337473 PMCID: PMC11432485 DOI: 10.3390/ijms25189984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage repair remains a major challenge in human orthopedic medicine, necessitating the application of innovative strategies to overcome existing technical and clinical limitations. Adhesive hydrogels have emerged as promising candidates for cartilage repair promotion and tissue engineering, offering key advantages such as enhanced tissue integration and therapeutic potential. This comprehensive review navigates the landscape of adhesive hydrogels in cartilage repair, discussing identified challenges, shortcomings of current treatment options, and unique advantages of adhesive hydrogel products and scaffolds. While emphasizing the critical need for in situ lateral integration with surrounding tissues, we dissect current limitations and outline future perspectives for hydrogel scaffolds in cartilage repair. Moreover, we examine the clinical translation pathway and regulatory considerations specific to adhesive hydrogels. Overall, this review synthesizes the existing insights and knowledge gaps and highlights directions for future research regarding adhesive hydrogel-based devices in advancing cartilage tissue engineering.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Philippe
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Boys AJ. There and Back Again: Building Systems That Integrate, Interface, and Interact with the Human Body. Adv Biol (Weinh) 2024; 8:e2300366. [PMID: 38400703 DOI: 10.1002/adbi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since Dr. Theodor Schwann posed the extension of Cell Theory to mammals in 1839, scientists have dreamt up ways to interface with and influence the cells. Recently, considerable ground in this area is gained, particularly in the scope of bioelectronics. New advances in this area have provided with a means to record electrical activity from cells, examining neural firing or epithelial barrier integrity, and stimulate cells through applied electrical fields. Many of these applications utilize invasive implantation systems to perform this interaction in close proximity to the cells in question. Traditionally, the body's immune system fights back against these systems through the foreign body response, limiting the efficacy of long-term interactions. New technologies in tissue engineering, biomaterials science, and bioelectronics offer the potential to circumvent the foreign body response and create stable long-term biological interfaces. Looking ahead, the next advancements in the biomedical sciences can truly integrate, interface, and interact with the human body.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
4
|
Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop 2024; 11:e12016. [PMID: 38572391 PMCID: PMC10985633 DOI: 10.1002/jeo2.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Abstract Intact articular cartilage plays a vital role in joint homeostasis. Local cartilage repairs, where defects in the cartilage matrix are filled in and sealed to congruity, are therefore important treatments to restore a joint equilibrium. The base for all cartilage repairs is the cells; either chondrocytes or chondrogeneic cells from bone, synovia and fat tissue. The surgical options include bone marrow stimulation techniques alone or augmented with scaffolds, chondrogeneic cell implantations and osteochondral auto- or allografts. The current trend is to choose one-stage procedures being easier to use from a regulatory point of view. This narrative review provides an overview of the current nonoperative and surgical options available for the repair of various cartilage lesions. Level of Evidence Level IV.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, Team Orthopedic Research Region Halland‐TOR, Region Halland Orthopaedics, Varberg HospitalUniversity of GothenburgVarbergSweden
| |
Collapse
|
5
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
6
|
Castro NJ, Babakhanova G, Hu J, Athanasiou K. Nondestructive testing of native and tissue-engineered medical products: adding numbers to pictures. Trends Biotechnol 2022; 40:194-209. [PMID: 34315621 PMCID: PMC8772387 DOI: 10.1016/j.tibtech.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/03/2023]
Abstract
Traditional destructive tests are used for quality assurance and control within manufacturing workflows. Their applicability to biomanufacturing is limited due to inherent constraints of the biomanufacturing process. To address this, photo- and acoustic-based nondestructive testing has risen in prominence to interrogate not only structure and function, but also to integrate quantitative measurements of biochemical composition to cross-correlate structural, compositional, and functional variances. We survey relevant literature related to single-mode and multimodal nondestructive testing of soft tissues, which adds numbers (quantitative measurements) to pictures (qualitative data). Native and tissue-engineered articular cartilage is highlighted because active biomanufacturing processes are being developed. Included are recent efforts and prominent trends focused on technologies for clinical and in-process biomanufacturing applications.
Collapse
Affiliation(s)
- Nathan J. Castro
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - Greta Babakhanova
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jerry Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA
| | - K.A. Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617, USA,Correspondence:
| |
Collapse
|
7
|
Gao T, Boys AJ, Zhao C, Chan K, Estroff LA, Bonassar LJ. Non-Destructive Spatial Mapping of Glycosaminoglycan Loss in Native and Degraded Articular Cartilage Using Confocal Raman Microspectroscopy. Front Bioeng Biotechnol 2021; 9:744197. [PMID: 34778225 PMCID: PMC8581176 DOI: 10.3389/fbioe.2021.744197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Articular cartilage is a collagen-rich tissue that provides a smooth, lubricated surface for joints and is also responsible for load bearing during movements. The major components of cartilage are water, collagen, and proteoglycans. Osteoarthritis is a degenerative disease of articular cartilage, in which an early-stage indicator is the loss of proteoglycans from the collagen matrix. In this study, confocal Raman microspectroscopy was applied to study the degradation of articular cartilage, specifically focused on spatially mapping the loss of glycosaminoglycans (GAGs). Trypsin digestion was used as a model for cartilage degradation. Two different scanning geometries for confocal Raman mapping, cross-sectional and depth scans, were applied. The chondroitin sulfate coefficient maps derived from Raman spectra provide spatial distributions similar to histological staining for glycosaminoglycans. The depth scans, during which subsurface data were collected without sectioning the samples, can also generate spectra and GAG distributions consistent with Raman scans of the surface-to-bone cross sections. In native tissue, both scanning geometries demonstrated higher GAG content at the deeper zone beneath the articular surface and negligible GAG content after trypsin degradation. On partially digested samples, both scanning geometries detected an ∼100 μm layer of GAG depletion. Overall, this research provides a technique with high spatial resolution (25 μm pixel size) to measure cartilage degradation without tissue sections using confocal Raman microspectroscopy, laying a foundation for potential in vivo measurements and osteoarthritis diagnosis.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Crystal Zhao
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Kiara Chan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, United States
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
8
|
Migliorini F, Eschweiler J, Maffulli N, Schenker H, Driessen A, Rath B, Tingart M. Autologous Matrix Induced Chondrogenesis (AMIC) Compared to Microfractures for Chondral Defects of the Talar Shoulder: A Five-Year Follow-Up Prospective Cohort Study. Life (Basel) 2021; 11:life11030244. [PMID: 33809441 PMCID: PMC8001819 DOI: 10.3390/life11030244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Many procedures are available to manage cartilage defects of the talus, including microfracturing (MFx) and Autologous Matrix Induced Chondrogenesis (AMIC). Whether AMIC or MFx are equivalent for borderline sized defects of the talar shoulder is unclear. Thus, the present study compared the efficacy of primary isolated AMIC versus MFx for borderline sized focal unipolar chondral defects of the talar shoulder at midterm follow-up. Methods: Patients undergoing primary isolated AMIC or MFx for focal unipolar borderline sized chondral defects of the talar shoulder were recruited prospectively. For those patients who underwent AMIC, a type I/III collagen resorbable membrane was used. The outcomes of interest were: Visual Analogic Scale (VAS), Tegner Activity Scale, American Orthopedic Foot and Ankle Score (AOFAS). The Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) was assessed by a blinded radiologist, who had not been involved in the clinical management of the patients. Data concerning complication rate and additional procedures were also collected. Results: The mean follow-up was 43.5 months. The mean age of the 70 patients at operation was 32.0 years, with a mean defect size of 2.7 cm2. The mean length of hospitalization was shorter in the MFx cohort (p = 0.01). No difference was found between the two cohorts in terms of length of prior surgery symptoms and follow-up, mean age and BMI, sex and side, and defect size. At a mean follow-up of 43.5 months, the AOFAS (p = 0.03), VAS (p = 0.003), and Tegner (p = 0.01) scores were greater in the AMIC group. No difference was found in the MOCART score (p = 0.08). The AMIC group evidenced lower rates of reoperation (p = 0.008) and failure (p = 0.003). Conclusion: At midterm follow-up, AMIC provides better results compared to MFx.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Jörg Eschweiler
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Staffordshire ST4 7QB, UK
- Barts and the London School of Medicine and Dentistry, London E1 2AD, UK
- Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, London E1 4DG, UK
- Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria
- Correspondence:
| | - Hanno Schenker
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Arne Driessen
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| | - Björn Rath
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
| | - Markus Tingart
- Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; (F.M.); (J.E.); (H.S.); (A.D.); (B.R.); (M.T.)
| |
Collapse
|