1
|
Zhang BD, Chen X, Su JY, Zhuo SH, Zhao L, Wu JJ, Li WH, Wang TY, Liu L, Yang T, Yang LJ, Zhao YF, Li YM. Rationally designed anti-autophagy nanosystems for reversing the immunosuppressive network in the tumor environment. Nanomedicine (Lond) 2025:1-12. [PMID: 40401367 DOI: 10.1080/17435889.2025.2508133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 05/15/2025] [Indexed: 05/23/2025] Open
Abstract
AIMS To develop a nano-immunotherapy system combining autophagy inhibition and innate immune activation to reverse the immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). MATERIALS & METHODS The pH-responsive polymer PC7A was utilized to co-deliver the autophagy inhibitor chloroquine (CQ) and the STING agonist cyclic diguanylate (CDG), forming the CQCP nanosystem. In vitro and in vivo experiments evaluated autophagy inhibition, MHC-I expression, dendritic cell activation, tumor infiltration of lymphocytes, and survival in PDAC-bearing mice. RESULTS CQCP enhanced MHC-I expression on PDAC cells by 2.1-fold (p < 0.001) and increased activated dendritic cells (CD86+/CD40+) by 3.5-fold (p < 0.01) in the TME. Tumor-infiltrating CD8+ T cells rose by 42.6% (p < 0.001), and systemic immune activation in peripheral lymphoid tissues was observed. CQCP achieved an 86% survival rate in tumor-bearing mice, significantly outperforming monotherapies or free drug combinations. CONCLUSIONS The CQCP system synergistically reverses PDAC immunosuppression by restoring antigen presentation and activating innate immunity. This dual-targeted strategy demonstrates robust antitumor efficacy and offers a promising immunotherapy approach for PDAC.
Collapse
Affiliation(s)
- Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Xi Chen
- Zhili College, Tsinghua University, Beijing, China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Shao-Hua Zhuo
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Lang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Jun-Jun Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Tian-Yang Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Ling Liu
- Peking University First Hospital, Beijing, China
| | - Tao Yang
- Key Laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li-Jun Yang
- Key Laboratory of Digestive Disease & Organ Transplantation in Shanxi Province, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Bisoi A, Majumdar T, Sarkar S, Singh PC. Flanking Effect on the Folding of Telomeric DNA Sequences into G-Quadruplex Induced by Antimalarial Drugs. J Phys Chem B 2025; 129:835-843. [PMID: 39807525 DOI: 10.1021/acs.jpcb.4c05133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt. However, the guanine repetitive telomeric sequences are always flanked by other nucleobases at both the terminal (5' or 3') that can affect the drug-induced folding pathways and stability of the G4 significantly. Hence, in this study, the HCQ and CQ drug-induced folding of the guanine repetitive telomeric sequences into G4 and its stability by varying the chemical nature, number, and positions of the flanking nucleobases has been explored using several biophysical techniques and docking studies. It has been found that the drug-induced folding of telomere with single flanking nucleobases is similar to that without flanking nucleobases irrespective of the chemical nature and position of the flanking nucleobase. However, the propensity of the folding and the stability of the telomeric G4 induced by drugs decrease significantly with the increase of the flanking nucleobases more than one of any chemical nature and position. The data suggest that the number of flanking nucleobases rather than their chemical nature and location is a critical factor in the folding of the telomere into G4 induced by both drugs. Further, it has been observed that both drugs mainly interact with the G-tract and thymine of the loop region rather than the flanking nucleobases of the telomeric sequences without or with one flanking nucleobase. In contrast, the flanking nucleobases also participate in the interaction with the HCQ and CQ along with the core guanine repeat telomeric unit in the case of the telomeric sequences with more than one flanking nucleobases. The participation of the flanking nucleobases in the interaction with the HCQ and CQ affects the hydrogen bonding of the positively charged side chain of drugs with G quartet and loop nucleobases of telomere along with the with π···π and C-H···π weak interactions between the quinoline part of the drugs with the core telomeric guanine repeat unit which affects the folding pattern of the telomere sequences with more than one flanking nucleobases into G4.
Collapse
Affiliation(s)
- Asim Bisoi
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Trideep Majumdar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sunipa Sarkar
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prashant Chandra Singh
- School of the Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Wan Q, Ren Q, Qiao S, Lyu A, He X, Li F. Therapeutic potential of flavonoids from traditional Chinese medicine in pancreatic cancer treatment. Front Nutr 2024; 11:1477140. [PMID: 39650709 PMCID: PMC11620852 DOI: 10.3389/fnut.2024.1477140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive malignancy with rising mortality rates globally. Its diagnosis is often challenging due to its asymptomatic nature in the early stages. Consequently, most patients receive a poor prognosis, with low survival rates within 5 years, as the disease is typically detected at an advanced stage, complicating effective treatment. Flavonoids, especially those derived from traditional Chinese herbal medicines, have attracted considerable attention for their potent anti-PC properties. This review highlights the therapeutic potential of these bioactive compounds, which modulate key biological pathways, making them promising candidates for PC intervention. Their mechanisms of action include the regulation of autophagy, apoptosis, cell growth, epithelial-mesenchymal transition, and oxidative stress, as well as enhancing chemotherapeutic sensitivity, exerting antiangiogenic effects, and potentially boosting immunomodulatory responses. The demonstrated benefits of these natural compounds in cancer management have spurred extensive academic interest. Beyond their role as anti-cancer agents, flavonoids may provide both preventive and therapeutic advantages for PC, resonating with the core principles of traditional Chinese medicine for disease prevention and holistic treatment.
Collapse
Affiliation(s)
- Qi Wan
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shuangying Qiao
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lyu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xingwei He
- Acupuncture Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fangfei Li
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
4
|
Ciołczyk-Wierzbicka D, Zarzycka M, Placha W, Zemanek G, Wierzbicki K. Treatment of Melanoma Cells with Chloroquine and Everolimus Activates the Apoptosis Process and Alters Lipid Redistribution. Int J Mol Sci 2024; 25:12278. [PMID: 39596342 PMCID: PMC11594807 DOI: 10.3390/ijms252212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The balance between apoptosis and autophagy plays a key role in cancer biology and treatment strategies. The aim of this study was to assess the effect of the mTOR kinase inhibitor everolimus and chloroquine on the regulation of proliferation, caspase-3 activation, and apoptosis in melanoma cells. We studied the activity of caspase-3 and the levels of caspase-3 and -9 using the Western blot technique. Cellular apoptosis was examined using a DNA fragmentation assay, and changes in the cell nucleus and cytoskeleton were examined using fluorescence microscopy DAPI, OA/IP. We also studied the rearrangement of lipid structures using fluorescent dyes: Nile Red and Nile Blue. A low nanomolar concentration of the mTOR kinase inhibitor everolimus in combination with chloroquine activated the apoptosis process and decreased cell proliferation. These changes were accompanied by an obvious change in cell morphology and rearrangement of lipid structures. Alterations in lipid redistribution accompanying the process of apoptosis and autophagy are among the first to occur in the cell and can be easily monitored in in vitro studies. The combination of mTOR inhibitors and chloroquine represents a promising area of research in cancer therapy. It has the potential to enhance treatment efficacy through complementary mechanisms.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Cracow, Poland; (M.Z.); (W.P.); (G.Z.)
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Cracow, Poland; (M.Z.); (W.P.); (G.Z.)
| | - Wojciech Placha
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Cracow, Poland; (M.Z.); (W.P.); (G.Z.)
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034 Cracow, Poland; (M.Z.); (W.P.); (G.Z.)
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University, John Paul II Hospital, ul. Prądnicka 80, 31-202 Cracow, Poland
| |
Collapse
|
5
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|