1
|
Liu X, Xu N, Song X, Zhuang L, Shen Q, Sun H. Scalable Production of Recombinant Adeno-Associated Virus Vectors Expressing Soluble Viral Receptors for Broad-Spectrum Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Type 2. Vet Sci 2025; 12:366. [PMID: 40284868 PMCID: PMC12031001 DOI: 10.3390/vetsci12040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment. We then used an insect cell-baculovirus expression vector system to produce the rAAV-SRCR59-Fc/Sn4D-Fc vector. Through a series of optimizations, we determined the best conditions for rAAV production, including a baculovirus co-infection ratio of 0.5:1.0, an initial insect cell density of 2.0 × 106 cells/mL, a fetal bovine serum concentration of 2%, and a culture temperature of 30 °C. Under these optimized conditions, we achieved a high titer of rAAV-SRCR59-Fc/Sn4D-Fc in a 2 L bioreactor, reaching 5.4 ± 0.9 × 109 infectious viral particles (IVPs)/mL. Notably, in vitro neutralization assays using a Transwell co-culture system demonstrated a 4.3 log reduction in viral titers across genetically diverse PRRSV-2 strains, including VR2332, JXA1, JS07, and SH1705. Collectively, this study provides a robust platform for large-scale rAAV production and highlights the potential of SVR-based gene therapy to address the antigenic diversity of PRRSV-2.
Collapse
Affiliation(s)
- Xiaoming Liu
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
- The College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Nuo Xu
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Xiaoli Song
- Jiangsu Provincial Animal Disease Control Center, 124 Caochangmen Street, Nanjing 210036, China;
| | - Linlin Zhuang
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Qiuping Shen
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Huaichang Sun
- The College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
3
|
Sharma S, Mahadevan J, Giri L, Mitra K. Identification of optimal flow rate for culture media, cell density, and oxygen toward maximization of virus production in a fed-batch baculovirus-insect cell system. Biotechnol Bioeng 2023; 120:3529-3542. [PMID: 37749905 DOI: 10.1002/bit.28558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
In recent times, it has been realized that novel vaccines are required to combat emerging disease outbreaks, and faster optimization is required to respond to global vaccine demands. Although, fed-batch operations offer better productivity, experiment-based optimization of a new fed-batch process remains expensive and time-consuming. In this context, we propose a novel computational framework that can be used for process optimization and control of a fed-batch baculovirus-insect cell system. Since the baculovirus expression vector system (BEVS) is known to be widely used platforms for recombinant protein/vaccine production, we chose this system to demonstrate the identification of optimal profile. Toward this, first, we constructed a mathematical model that captures the time course of cell and virus growth in a baculovirus-insect cell system. Second, the proposed model was used for numerical analysis to determine the optimal operating profiles of control variables such as culture media, cell density, and oxygen based on a multiobjective optimal control formulation. Third, a detailed comparison between batch and fed-batch culture was perfromed along with a comparison between various alternatives of fed-batch operation. Finally, we demonstrate that a model-based quantification of controlled feed addition in fed-batch culture is capable of providing better productivity as compared to a batch culture. The proposed framework can be utilized for the estimation of optimal operating regions of different control variables to achieve maximum infected cell density and virus yield while minimizing the substrate/media, uninfected cell, and oxygen consumption.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Jagadeesh Mahadevan
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Sharma S, Keerthi PN, Giri L, Mitra K. Toward Performance Improvement of a Baculovirus–Insect Cell System under Uncertain Environment: A Robust Multiobjective Dynamic Optimization Approach for Semibatch Suspension Culture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Surbhi Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana502284, India
| | - Pujari Nagasree Keerthi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana502284, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana502284, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana502284, India
| |
Collapse
|
5
|
Lavado-García J, Pérez-Rubio P, Cervera L, Gòdia F. The cell density effect in animal cell-based bioprocessing: Questions, insights and perspectives. Biotechnol Adv 2022; 60:108017. [PMID: 35809763 DOI: 10.1016/j.biotechadv.2022.108017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Pol Pérez-Rubio
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
6
|
Culture media selection and feeding strategy for high titer production of a lentiviral vector by stable producer clones cultivated at high cell density. Bioprocess Biosyst Eng 2022; 45:1267-1280. [PMID: 35758994 PMCID: PMC9363386 DOI: 10.1007/s00449-022-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
The growing interest in the use of lentiviral vectors (LVs) for various applications has created a strong demand for large quantities of vectors. To meet the increased demand, we developed a high cell density culture process for production of LV using stable producer clones generated from HEK293 cells, and improved volumetric LV productivity by up to fivefold, reaching a high titer of 8.2 × 107 TU/mL. However, culture media selection and feeding strategy development were not straightforward. The stable producer clone either did not grow or grow to lower cell density in majority of six commercial HEK293 media selected from four manufacturers, although its parental cell line, HEK293 cell, grows robustly in these media. In addition, the LV productivity was only improved up to 53% by increasing cell density from 1 × 106 and 3.8 × 106 cells/mL at induction in batch cultures using two identified top performance media, even these two media supported the clone growth to 5.7 × 106 and 8.1 × 106 cells/mL, respectively. A combination of media and feed from different companies was required to provide diverse nutrients and generate synergetic effect, which supported the clone growing to a higher cell density of 11 × 106 cells/mL and also increasing LV productivity by up to fivefold. This study illustrates that culture media selection and feeding strategy development for a new clone or cell line can be a complex process, due to variable nutritional requirements of a new clone. A combination of diversified culture media and feed provides a broader nutrients and could be used as one fast approach to dramatically improve process performance.
Collapse
|
7
|
Joshi PRH, Venereo-Sanchez A, Chahal PS, Kamen AA. Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnol J 2021; 16:e2000021. [PMID: 33277815 DOI: 10.1002/biot.202000021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/27/2020] [Indexed: 01/23/2023]
Abstract
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| | | | - Parminder S Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montréal, Quebec, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
8
|
Wu Y, Mei T, Jiang L, Han Z, Dong R, Yang T, Xu F. Development of Versatile and Flexible Sf9 Packaging Cell Line-Dependent OneBac System for Large-Scale Recombinant Adeno-Associated Virus Production. Hum Gene Ther Methods 2020; 30:172-183. [PMID: 31566024 PMCID: PMC6834060 DOI: 10.1089/hgtb.2019.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are excellent vectors for gene delivery. However, current Sf9/Cap-Rep packaging cell line-dependent OneBac systems still lack versatility and flexibility for large-scale production of rAAVs. In this study, we developed an improved OneBac system that includes a novel dual-function baculovirus expression vector (BEV) termed BEV/Cap-(ITR-GOI) that carries both the AAV Cap gene and rAAV genome inverted terminal repeat (ITR) sequences flanking the gene of interest (GOI), a versatile Sf9-GFP/Rep packaging cell line that harbors silent copies of the AAV2 Rep gene that can be expressed after BEV infection, and constitutively expressed green fluorescent protein (GFP) reporter genes to facilitate cell line screening. The BEV/Cap-(ITR-GOI) construct allows flexibility to switch among different Cap gene serotypes using simple BEV reconstruction, and is stable for at least five serial passages. Furthermore, the Sf9-GFP/Rep stable cell line is versatile for production of different rAAV serotypes. The yield levels for rAAV2, rAAV8, and rAAV9 exceeded 105 vector genomes (VG) per cell, which is similar to other currently available large-scale rAAV production systems. The new Bac system-derived rAAVs have biophysical properties similar to HEK293 cell-derived rAAVs, as well as high quality and activity. In summary, the novel Sf9-GFP/Rep packaging cell line-dependent OneBac system can facilitate large-scale rAAV production and rAAV-based gene therapy.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ting Mei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ruping Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
9
|
Wu Y, Jiang L, Geng H, Yang T, Han Z, He X, Lin K, Xu F. A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:38-47. [PMID: 29988889 PMCID: PMC6034586 DOI: 10.1016/j.omtm.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Current large-scale recombinant adeno-associated virus (rAAV) production systems based on the baculovirus expression vector (BEV) remain complicated and cost-intensive, and they lack versatility and flexibility. Here we present a novel recombinant baculovirus integrated with all packaging elements for the production of rAAV. To optimize BEV construction, ribosome leaky-scanning mechanism was used to express AAV Rep and Cap proteins downstream of the PH and P10 promoters in the pFast.Bac.Dual vector, respectively, and the rAAV genome was inserted between the two promoters. The yields of rAAV2, rAAV8, and rAAV9 derived from the BEV-infected Sf9 cells exceeded 105 vector genomes (VG) per cell. The BEV was shown to be stable and showed no apparent decrease of rAAV yield after at least four serial passages. The rAAVs derived from the new Bac system displayed high-quality and high-transduction activity. Additionally, rAAV2 could be efficiently generated from BEV-infected beet armyworm larvae at a per-larvae yield of 2.75 ± 1.66 × 1010 VG. The rAAV2 derived from larvae showed a structure similar to the rAAV2 derived from HEK293 cells, and it also displayed high-transduction activity. In summary, the novel BEV is ideally suitable for large-scale rAAV production. Further, this study exploits a potential cost-efficient platform for rAAV production in insect larvae.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hao Geng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobing He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunzhang Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Monteiro F, Bernal V, Chaillet M, Berger I, Alves PM. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. J Biotechnol 2016; 233:34-41. [DOI: 10.1016/j.jbiotec.2016.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
|
11
|
Chen JK, Yeh CH, Wang LC, Liou TH, Shen CR, Liu CL. Chitosan, the marine functional food, is a potent adsorbent of humic acid. Mar Drugs 2011; 9:2488-2498. [PMID: 22363235 PMCID: PMC3280574 DOI: 10.3390/md9122488] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 11/17/2022] Open
Abstract
Chitosan is prepared by the deacetylation of chitin, the second-most abundant biopolymer in nature, and has applicability in the removal of dyes, heavy metals and radioactive waste for pollution control. In weight-reduction remedies, chitosan is used to form hydrogels with lipids and to depress the intestinal absorption of lipids. In this study, an experimental method was implemented to simulate the effect of chitosan on the adsorption of humic acid in the gastrointestinal tract. The adsorption capacity of chitosan was measured by its adsorption isotherm and analyzed using the Langmuir equation. The results showed that 3.3 grams of humic acid was absorbed by 1 gram of chitosan. The adsorption capacity of chitosan was much greater than that of chitin, diethylaminoethyl-cellulose or activated charcoal. Cellulose and carboxymethyl-cellulose, a cellulose derivative with a negative charge, could not adsorb humic acid in the gastrointestinal tract. This result suggests that chitosan entraps humic acid because of its positive charge.
Collapse
Affiliation(s)
- Jeen-Kuan Chen
- Environment and Biotechnology Department, Refining and Manufacturing Research Institute, CPC Corporation, Chia-Yi 60051, Taiwan;
| | - Chao-Hsien Yeh
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, New Taipei 24301, Taiwan, (C.-H.Y.); (T.-H.L.)
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Tao-Yuan 24301, Taiwan;
| | - Tzong-Horng Liou
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, New Taipei 24301, Taiwan, (C.-H.Y.); (T.-H.L.)
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Tao-Yuan 33302, Taiwan;
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, New Taipei 24301, Taiwan, (C.-H.Y.); (T.-H.L.)
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, 84 Gung-Juan Road, Taishan, New Taipei 24301, Taiwan
| |
Collapse
|
12
|
Roldão A, Vicente T, Peixoto C, Carrondo MJT, Alves PM. Quality control and analytical methods for baculovirus-based products. J Invertebr Pathol 2011; 107 Suppl:S94-105. [PMID: 21784235 DOI: 10.1016/j.jip.2011.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/24/2011] [Indexed: 11/28/2022]
Affiliation(s)
- António Roldão
- Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, Apartado 127, P-2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|