1
|
Fujiyama K, Muranaka T, Okazawa A, Seki H, Taguchi G, Yasumoto S. Recent advances in plant-based bioproduction. J Biosci Bioeng 2024; 138:1-12. [PMID: 38614829 DOI: 10.1016/j.jbiosc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/15/2024]
Abstract
Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins. Although plant-based bioproduction has traditionally relied on classical tissue culture methods, the attraction of bioproduction by plants is increasing with the development of omics and bioinformatics and other various technologies, as well as synthetic biology. This review describes the current status and prospects of these plant-based bioproduction from five advanced research topics, (i) de novo production of plant-derived high value terpenoids in engineered yeast, (ii) biotransformation of plant-based materials, (iii) genome editing technology for plant-based bioproduction, (iv) environmental effect of metabolite production in plant factory, and (v) molecular pharming.
Collapse
Affiliation(s)
- Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Atsushi Okazawa
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Herman X, Far J, Peeters M, Quinton L, Chaumont F, Navarre C. In vivo deglycosylation of recombinant glycoproteins in tobacco BY-2 cells. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1773-1784. [PMID: 37266972 PMCID: PMC10440984 DOI: 10.1111/pbi.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023]
Abstract
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.
Collapse
Affiliation(s)
- Xavier Herman
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Johann Far
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - Marie Peeters
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
3
|
Sialoglycans and genetically engineered plants. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153322 DOI: 10.1016/b978-0-12-816126-5.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants express N-glycosylation pathways and produce N-glycosylated proteins but differ from the mammalian-type proteins. Therefore attempts are made to design and engineer plant glycosylation pathways that can produce mammalian-type glycosylated moieties so that large quantities of biopharmaceuticals compatible to the human body can be produced. Most of the studies of plant expression systems for molecular farming have been conducted on Nicotiana sp. and genetic engineering and molecular biology tools have enabled the generation of glycoengineered plant for human use in the production of therapeutic recombinant proteins. We have discussed in this chapter the advances of glycoengineering in plants with special reference to the reconstruction of silaylation pathways in plants and the latest application in the production of antibody and therapeutics in plants.
Collapse
|
4
|
Navarre C, Smargiasso N, Duvivier L, Nader J, Far J, De Pauw E, Boutry M. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase. Transgenic Res 2017; 26:375-384. [PMID: 28332009 DOI: 10.1007/s11248-017-0013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
Abstract
Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.
Collapse
Affiliation(s)
- Catherine Navarre
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.
| | | | - Laurent Duvivier
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Joseph Nader
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, University of Liege, 4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, University of Liege, 4000, Liège, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
6
|
Abstract
Plants are being developed as a cost-effective production system for biopharmaceuticals in large quantities. Although plants properly fold and assemble complex proteins from human origin, one issue that needs to be addressed is their glycan structure. In the past years we have been witnessing outstanding results in targeted manipulation of the plant N-glycosylation pathway allowing recombinant proteins to be produced with human-type oligosaccharides at large homogeneity. This opens new possibility in manufacturing next-generation biopharmaceuticals.This review presents a variety of technologies and strategies that are being employed to engineer the plant N-glycosylation, thus pointing to the enormous potential of plants being used as a novel production system with unique features and possibilities.
Collapse
|
7
|
Kajiura H, Fujiyama K. Im"plant"ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation. Methods Mol Biol 2015; 1321:225-232. [PMID: 26082226 DOI: 10.1007/978-1-4939-2760-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enzymatic activity assay of exogenous glycosyltransferase (GT) and glycosylhydrolase (GH) expressed in plants is an important analysis for determination of the expression of the gene of interest. However, generations and establishment of in planta transgenic lines are time-consuming. Furthermore, the expression levels and the activities of the exogenous GTs and GHs are quite low and weak, the radiolabeled donor substrate had to be used to analyze the enzymatic activity. Here, we describe a protocol for the generation of transgenic plants using suspension-cultured cells and a high sensitive assay for GT, especially β1,4-galactosyltransferase, using microsomal fraction from plant cells and fluorescent-labeled sugar chains as an acceptor substrate. This method enables less-time-consuming preparation of stable transgenic plants, non-radiolabeled, high-throughput detail analysis which includes mass spectrometric analysis and exo-glycosidase digestions.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, Osaka, Japan
| | | |
Collapse
|
8
|
Misaki R, Sakai Y, Omasa T, Fujiyama K, Seki T. N-terminal vacuolar sorting signal at the mouse antibody alters the N-linked glycosylation pattern in suspension-cultured tobacco BY2 cells. J Biosci Bioeng 2011; 112:476-84. [PMID: 21802986 DOI: 10.1016/j.jbiosc.2011.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/14/2011] [Accepted: 07/04/2011] [Indexed: 11/25/2022]
Abstract
Recombinant DNA technology enables the use of plants as the host for the production of pharmaceutical proteins, such as antibodies. The glycosylation of recombinant proteins plays physiological and biological roles. However, because glycosylation in plants is different from that in human cells, the development of glycoengineering is required. In plant cells, glycan structures are shown to correlate with the localization of the recombinant protein produced. In this study, the vacuolar sorting signal (VSS) of sporamin was fused to the heavy (H) and light (L) chains of a mouse monoclonal antibody (mAb), and the mAb was produced in suspension-cultured tobacco BY2 cells. The sugar chain structures were determined by high-performance liquid chromatography, exoglycosidase digestion, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Typical plant glycans with α1,3-fucosylation and/or β1,2-xylosylation derived from mAb with the VSS-fused H-chain (mIgG1000) and mAb with the VSS-fused H- and L-chain (mIgG1010) occupied the large amount of the total N-glycans, 72.1% and 85.0%, respectively, such as those derived from mAb without VSS (mIgG0000), 74.6% (Fujiyama et al., J. Biosci. Bioeng., 101, 212-218, 2006). In contrast, the typical plant glycan structure Man₃FucXylGlcNAc₂ particularly in vacuoles accounted for 37.8% of the total sugar chains derived from mIgG1000 and 58.5% of those derived from mIgG1010 compared with 24.3% of those derived from mIgG0000. These results suggest that the sporamin signal peptide fused to mAb acts as a VSS and leads to the increase in the amount of Man₃FucXylGlcNAc₂, which is the main N-glycan structure in vacuoles.
Collapse
Affiliation(s)
- Ryo Misaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|