1
|
Hamzah N, Ismail N, Kasmuri N. Benzo(a)pyrene degradation by the interaction of Aspergillus brasilensis and Sphigobacterium spiritovorum in wastewater: optimisation and kinetic response. ENVIRONMENTAL TECHNOLOGY 2025; 46:2268-2280. [PMID: 39581567 DOI: 10.1080/09593330.2024.2428442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Benzo(a)pyrene (BaP) is a well-known environmental contaminant that poses significant risks due to its carcinogenic nature and it is crucial to remove it from the environment, especially in wastewater. Thus, this study aims to enhance the degradation of BaP in wastewater through the optimised interaction of the fungus Aspergillus brasiliensis and the bacterium Sphingomonas spiritovorum. The ideal initial pH and temperature ranges for optimising BaP breakdown were determined using response surface methodology (RSM). For that, the range of initial pH chosen was pH 4-9 and the temperature was between 25℃ - 40℃. The first-order kinetic was used to determine the kinetic response for monoculture and co-culture. The co-culture of A. brasiliensis and S. spiritovorum successfully produced a BaP removal rate of over 50%, which was much higher than the removal rates observed in monoculture treatments under optimisation conditions. The kinetic response was obtained with 0.067 d-1 (A. brasiliensis), 0.127 d-1 (S.spriritovorum) and 0.144 d-1 (co-culture) for the degradation rate constant, K. The degradation half-life time, t1/2 shows the decrement for the co-culture (4.83 days) compared to monoculture. The increased degradation has been attributed to the synergistic biochemical pathways, in which fungal ligninolytic enzymes initiate the breakdown of BaP, followed by bacterial degradation of the resulting compounds. The study's results, which have been validated by Analysis of Variance (ANOVA), offer insightful information for the enhancement of bioremediation strategies. This information is practicable for researchers, practitioners, and policymakers in the context of addressing carcinogenic pollutants in wastewater.
Collapse
Affiliation(s)
- Nurhidayah Hamzah
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Norasyikin Ismail
- Division of Water Resources Management and Hydrology, Department of Irrigation and Drainage, Kuala Lumpur, Malaysia
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
2
|
Saez JM, Raimondo EE, Costa-Gutierrez SB, Aparicio JD, Mosca Angelucci D, Donati E, Polti MA, Tomei MC, Benimeli CS. Enhancing environmental decontamination and sustainable production through synergistic and complementary interactions of actinobacteria and fungi. Heliyon 2025; 11:e42135. [PMID: 39991206 PMCID: PMC11847236 DOI: 10.1016/j.heliyon.2025.e42135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Actinobacteria and fungi are renowned for their metabolic diversity and adaptability to various environments, thus exhibiting significant potential for environmental decontamination and sustainable production. Both actinobacteria and fungi excel in producing diverse secondary metabolites and enzymes, offering valuable tools for industrial and environmental applications. Their ability to detoxify metals and degrade a wide range of organic pollutants, such as pesticides, hydrocarbons, and dyes, positions them as promising candidates for bioremediation. Recent shifts in microbiological sciences emphasize research on mixed microbial populations. Microbial interactions in mixed communities emulate natural processes and yield emergent properties such as stability, robustness, and enhanced metabolism. Co-cultures of actinobacteria and fungi harness a broader range of genes and metabolic capabilities through their distinctive interactions, opening new avenues for developing novel products and/or technologies. This review provides a critical analysis of the present status of knowledge regarding the potential of actinobacteria-fungi co-cultures with a particular focus on novel functionalities and heightened production efficiency. These consortia are promising in several fields, from environmental applications to the biosynthesis of industrially relevant metabolites and enzymes, and enhancements in agricultural production. Although challenges still exist, their potential to address complex problems has been demonstrated and deserves further investigation.
Collapse
Affiliation(s)
- Juliana M. Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Enzo E. Raimondo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000, Tucumán, Argentina
| | - Stefanie B. Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
| | - Juan D. Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Domenica Mosca Angelucci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Enrica Donati
- Institute for Biological Systems, National Research Council (CNR-ISB), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Marta A. Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, Tucumán, Argentina
| | - Maria C. Tomei
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300, CP 10, Monterotondo Stazione, 00015, Rome, Italy
| | - Claudia S. Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, 4000, Tucumán, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Belgrano 300, 4700, Catamarca, Argentina
| |
Collapse
|
3
|
Purnomo AS, Fauzany US, Rizqi HD, Alkas TR, Kamei I. Biodecolorization and biotransformation of methylene blue using mixed cultures of brown-rot fungus Daedalea dickinsii and filamentous fungus Aspergillus oryzae: identification of metabolites and degradation pathway. RSC Adv 2024; 14:5061-5068. [PMID: 38332787 PMCID: PMC10851058 DOI: 10.1039/d3ra08544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
This study aimed to examine biodecolorization and biotransformation of methylene blue (MB) using mixed cultures of brown-rot fungus Daedalea dickinsii and filamentous fungus Aspergillus oryzae. In addition, the ratio of D. dickinsii and A. oryzae in mixed cultures was 1 : 1, and the sample was incubated at 30 °C for 7 days in liquid medium potato dextrose broth (PDB). The results showed that the sample had the ability to remove and transform 95.24 mg L-1 MB. In this study, mixed cultures had the highest removal percentage of 64.77%, while values of 5.94% and 36.82% were obtained for single cultures of D. dickinsii and A. oryzae, respectively. LC-TOF/MS analysis results showed that peak intensity of MB compound (m/z 284) in each treatment chromatogram decreased compared to the control. The metabolites of decolorization by D. dickinsii were C15H16N3S, C16H19N3SO, and C16H21N3SO, while C31H48N3S+ was obtained using A. oryzae. For mixed cultures, the metabolites obtained included C26H37N2O3S, C9H8N2O3S, C28H38NO2S, and C27H27N5S2. Based on the results, mixed cultures of D. dickinsii and A. oryzae had a high MB decolorization and could be used in the textile industry.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia +62-31-5928314 +62-31-5943353
| | - Umirul Solichah Fauzany
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia +62-31-5928314 +62-31-5943353
| | - Hamdan Dwi Rizqi
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia +62-31-5928314 +62-31-5943353
| | - Taufiq Rinda Alkas
- Department of Environment Management, Politeknik Pertanian Negeri Samarinda Samarinda 75131 Indonesia
| | - Ichiro Kamei
- Department of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki 1-1, Gakuen-kibanadai-nishi Miyazaki 889-2192 Japan
| |
Collapse
|
4
|
Wu Y, Xi B, Fang F, Kou B, Gang C, Tang J, Tan W, Yuan Y, Yu T. Insights into relationships between polycyclic aromatic hydrocarbon concentration, bacterial communities and organic matter composition in coal gangue site. ENVIRONMENTAL RESEARCH 2023; 236:116502. [PMID: 37406721 DOI: 10.1016/j.envres.2023.116502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Coal mining usually brought polycyclic aromatic hydrocarbons (PAHs) contamination. Relationships between the concentration of PAHs, bacterial communities and soil environmental factors were important for bioremediation of PAHs in soil. Total 4 kinds of soil samples with different concentrations of PAHs were selected from 7 typical coal gangue(CG) sites in Huainan, Anhui Province. The relationships between microorganisms, dissolved organic matter (DOM) composition and PAHs concentration were systematically analyzed in this work. Total 11 kinds of PAHs were enriched in the soil surface layer. That was attributed to the strong binding of soil organic matter (SOM) to PAHs. PAHs contamination reduced the diversity of soil microbial. The abundance of PAHs-degrading genera such as Arthrobacter decreased with the increasing concentration of PAHs. Mycobacterium increased with the increasing concentration of PAHs in all samples. The microbial activities decreased with increasing concentration of PAHs. The increasing contents of LWM-PAHs and DOM were beneficial to improve the activities of soil microbial. The increasing DOM aromaticity was beneficial to improve the bioavailability of PAHs according to the correlation analysis between PAHs content and DOM structural parameters. The obtained results provide a basis for better understanding the contamination characteristics and microbial communities of coal gangue PAH-contaminated sites.
Collapse
Affiliation(s)
- Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Chen Gang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| |
Collapse
|
5
|
Meng L, Xu C, Wu F. Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157197. [PMID: 35839876 DOI: 10.1016/j.scitotenv.2022.157197] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulose, which contains cellulose, hemicellulose and lignin, is one of the most important factors determining the rate and quality of compost decomposition, and the microbial community composition affects the rate of lignocellulose decomposition. Interactions between microbial taxa contribute significantly to ecosystem energy flow and material cycling. However, it is not clear how interactions between microbial taxa affect the degradation of lignocellulose during the composting process. For this reason we carried out aerobic co-composting experiments with maize straw and cattle manure to explore the contribution of microbial community diversity and the interaction between taxa to lignocellulosic degradation. The results showed that moisture and temperature had the greatest effect on microbial communities during composting and that lignocellulose degradation was dominated by microbial co-occurrence networks rather than microbial community diversity. Overall co-occurrence network and bacterial-fungal interactions explained 23.9-84.1 % of lignocellulosic degradation, whereas microbial diversity only accounted for 24.6-31.5 %. Interestingly, keystone taxa analysis of the microbial co-occurrence networks revealed that low-abundance taxa influenced microbial interactions driving lignocellulose degradation. Our results provide a new perspective for understanding lignocellulose degradation during composting, offering insights into important microbial interaction mechanisms for improving compost quality and efficiency.
Collapse
Affiliation(s)
- Lingxu Meng
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Chunxue Xu
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| | - Fanlin Wu
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010000, China
| |
Collapse
|
6
|
Liu X, He L, Zhang X, Kong D, Chen Z, Lin J, Wang C. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119970. [PMID: 35995289 DOI: 10.1016/j.envpol.2022.119970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation is a potential remediation method for petroleum-contaminated soil. In order to explore the petroleum degradation mechanism by microorganisms, the oilfield soil was remedied by Acinetobacter baumannii combined with Talaromyces sp. The degradation mechanism was studied by analyzing soil microbial community and functional genes through metagenomics during the degradation process. The result showed the degradation rate of petroleum was 65.6% after 28 days. The concentration of petroleum decreased from 1220 mg/kg to 420 mg/kg. In the co-culture group, Acinetobacter baumannii became the dominant species, the annotated genes of it at the species level accounted for 7.34% while that of Talaromyces sp. accounted for only 0.34%. Meanwhile, the annotated genes of Bacillus, Halomonas, and Nitriliruptor at the genus level were up-regulated by 1.83%, 0.90%, and 0.71%, respectively. In addition, large functional genes were significantly up-regulated, including the peroxisome, P450 enzyme (CYP53, CYP116, CYP102, CYP645), and biofilm formulation, promoting the oxidation and hydroxylation, and catalyzing the epoxidation of aromatic and aliphatic hydrocarbons. Meanwhile, the degrading genes of alkanes and aromatic hydrocarbons were expressed promotionally, and degradation pathways were deduced. In conclusion, the inoculation of Acinetobacter baumannii combined with Talaromyces sp. accelerated the degradation of petroleum in oilfield soil and improved the growth of indigenous petroleum-degrading bacteria. Many functional genes related to petroleum degradation were promoted significantly. These results proved the co-culture of bacteria-fungi consortium contributes to the bioremediation of petroleum-contaminated soil.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Lihong He
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinying Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Dewen Kong
- Shanghai Solid Waste Disposal Co., Ltd., No. 666, Lane 2088, Nanbin Highway, Shanghai, 201302, China
| | - Zongze Chen
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jia Lin
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Chuanhua Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
Bakri M. Assessing some
Cladosporium
species in the biodegradation of petroleum hydrocarbon for treating oil contamination. J Appl Microbiol 2022; 133:3296-3306. [DOI: 10.1111/jam.15815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Marwah Bakri
- Department of Biology Jazan University Jizan Saudi Arabia
| |
Collapse
|
8
|
Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep 2022; 12:13227. [PMID: 35918482 PMCID: PMC9345985 DOI: 10.1038/s41598-022-17001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Biodegradation of high-molecular-weight petroleum hydrocarbons in saline conditions appears to be complicated and requires further investigation. This study used heavy crude oil to enrich petroleum-degrading bacteria from oil-contaminated saline soils. Strain HG 01, with 100% sequence similarity to Bacillus subtilis, grew at a wide range of salinities and degraded 55.5 and 77.2% of 500 mg/l pyrene and 500 mg/l tetracosane, respectively, at 5% w/v NaCl. Additionally, a mixed-culture of HG 01 with Pseudomonas putida and Pseudomonas aeruginosa, named TMC, increased the yield of pyrene, and tetracosane degradation by about 20%. Replacing minimal medium with treated seawater (C/N/P adjusted to 100/10/1) enabled TMC to degrade more than 99% of pyrene and tetracosane, but TMC had lesser degradation in untreated seawater than in minimal medium. Also, the degradation kinetics of pyrene and tetracosane were fitted to a first-order model. Compared to B. subtilis, TMC increased pyrene and tetracosane's removal rate constant (K1) from 0.063 and 0.110 per day to 0.123 and 0.246 per day. TMC also increased the maximum specific growth rate of B. subtilis, P. putida, and P. aeruginosa, respectively, 45% higher in pyrene, 24.5% in tetracosane, and 123.4% and 95.4% higher in pyrene and tetracosane.
Collapse
|
9
|
Zhang G, Yang X, Zhao Z, Xu T, Jia X. Artificial Consortium of Three E. coli BL21 Strains with Synergistic Functional Modules for Complete Phenanthrene Degradation. ACS Synth Biol 2022; 11:162-175. [PMID: 34914358 DOI: 10.1021/acssynbio.1c00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic and persistent organic pollutions that can accumulate in the environment. In this study, an aromatic ring cleavage module, a salicylic acid synthesis module, and a catechol metabolism module were respectively constructed in three Escherichia coli BL21 strains. Subsequently, the engineered strains were cocultured as an artificial consortium for the biodegradation of phenanthrene, a typical PHA. Single factor experiments and response surface methodology were used to identify the optimal degradation conditions, including an inoculation interval of 6 h, inoculation ratio of 1:1:1, and IPTG concentration of 2 mM. Under these conditions, the 7-day degradation ratio of 100 mg/L phenanthrene reached 72.67%. Moreover, the engineered Escherichia coli BL21 strains showed good phenanthrene degradation ability at substrate concentrations 10 mg/L up to 500 mg/L. Enzyme activity assays combined with gas chromatography-mass spectrometry measurements confirmed that the three engineered strains behaved as a synergistic consortium in the phenanthrene degradation process. Based on the analysis of the key metabolites, the engineered bacteria were supplemented at 7-day intervals in batches so that each engineered strain maintained its optimal degradation ability. The 21-day degradation ratio finally reached 90.66%, which was much higher than what was observed with simultaneous inoculation. These findings suggest that the three engineered strains with separate modules constructed in this study offer an attractive solution for removing PAHs from the environment.
Collapse
Affiliation(s)
- Guangbao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohui Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenhua Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
10
|
Li M, Yin H, Zhu M, Yu Y, Lu G, Dang Z. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. J Environ Sci (China) 2021; 107:65-76. [PMID: 34412788 DOI: 10.1016/j.jes.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), typical representatives of the persistent organic pollutants (POPs), have become ubiquitous in the environment. In this study, a novel microbial consortium QY1 that performed outstanding PAHs-degrading capacity has been enriched. The degradation characteristics of single and mixed PAHs treated with QY1 were studied, and the effect of biochar on biodegradation of mixed PAHs and the potential of biochar in PAHs-heavy metal combined pollution bioremediation were also investigated. Results showed that, in single substrate system, QY1 degraded 94.5% of 500 mg/L phenanthrene (PHE) and 17.8% of 10 mg/L pyrene (PYR) after 7 days, while in PHE-PYR mixture system, the biodegradation efficiencies of PHE (500 mg/L) and PYR (10 mg/L) reached 94.0% and 96.2%, respectively, since PHE served as co-metabolic substrate to have significantly improved PYR biodegradation. Notably, with the cooperation of biochar, the biodegradations of PHE and PYR were greatly accelerated. Further, biochar could reduce the adverse impact of heavy metals (Cd2+, Cu2+, Cr2O72-) on PYR biodegradation remarkably. The sequencing analysis revealed that Methylobacterium, Burkholderia and Stenotrophomonas were the dominant genera of QY1 in almost all treatments, indicating that these genera might play key roles in PAHs biodegradation. Overall, this study provided new insights into the efficient bioremediation of PAHs-contaminated site.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Guangdong 525000, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
11
|
Ghorbannezhad H, Moghimi H, Dastgheib SMM. Evaluation of pyrene and tetracosane degradation by mixed-cultures of fungi and bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126202. [PMID: 34492965 DOI: 10.1016/j.jhazmat.2021.126202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The present study was conducted to compare the efficiency of different microbial mixed-cultures consists of fifteen oil-degrading microorganisms with different combinations. The investigation was targeted toward the removal of 500 mg/l pyrene and 1% w/v tetracosane, as single compounds or mixture. Sequential Fungal-Bacterial Mixed-Culture (SMC) in which bacteria added one week after fungi, recorded 60.76% and 73.48% degradation for pyrene and tetracosane; about 10% more than Traditional Fungal-Bacterial Mixed-Culture (TMC). Co-degradation of pollutants resulted in 24.65% more pyrene degradation and 6.41% less tetracosane degradation. The non-specified external enzymes of fungi are responsible for initial attacks on hydrocarbons. Delayed addition of bacteria and co-contamination would result in higher growth of fungi which increases pyrene degradation. The addition of Rhamnolipid potently increased the extent of pyrene and tetracosane degradation by approximately 16% and 23% and showed twice better performance than Tween-80 in 20 times less concentration. The results indicated the importance of having sufficient knowledge on the characteristics of the contaminated site and its contaminants as well as oil-degrading species. Gaining this knowledge and using it properly, such as the later addition of bacteria (new method of mixed-cultures inoculation) to the contaminated culture, can serve as a promising approach.
Collapse
Affiliation(s)
- Hassan Ghorbannezhad
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
12
|
Zhang X, Kong D, Liu X, Xie H, Lou X, Zeng C. Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. CHEMOSPHERE 2021; 273:129666. [PMID: 33485133 DOI: 10.1016/j.chemosphere.2021.129666] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this work was to study the biodegradation of crude oil under alkaline condition by defined co-culture of Acinetobacter baumannii and Talaromyces sp. The n-alkanes in crude oil could be completely degraded by bacteria and fungi with the ratio of 1:1 at pH 9 in 14 d water simulation experiment. Meanwhile, the total degradation rate of crude oil could reach 80%. Fungi had stronger ability to degrade n-alkanes, while bacteria could better degrade other components such as aromatics and branched alkanes. The two strains were both capable of producing a small amount of biosurfactant. High cell viability was the main factor for strains to exert high degradation ability in alkaline environment. It was preliminarily verified that bacteria and fungi rely on the differences of enzyme systems to achieve synergy in the degradation process. These results indicated that the defined co-culture had great potential for bioremediation in alkaline soils.
Collapse
Affiliation(s)
- Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Dewen Kong
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Huanhuan Xie
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Xinyi Lou
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Cheng Zeng
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
13
|
Hirsch Ramos A, Silva Timm N, Dietrich Ferreira C, Antunes AC, Hoffmann JF, Oliveira Rios A, Oliveira M. Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adriano Hirsch Ramos
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | - Newiton Silva Timm
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
- Department of Agricultural Engineering Rural Sciences Center Federal University of Santa Maria Santa Maria Brazil
| | | | - Ana Clara Antunes
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| | | | - Alessandro Oliveira Rios
- Department of Food Science Institute of Food Science and Technology Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Maurício Oliveira
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
14
|
Zhang C, Wu X, Wu Y, Li J, An H, Zhang T. Enhancement of dicarboximide fungicide degradation by two bacterial cocultures of Providencia stuartii JD and Brevundimonas naejangsanensis J3. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123888. [PMID: 33264954 DOI: 10.1016/j.jhazmat.2020.123888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Bioremediation is commonly conducted by microbial consortia rather than individual species in natural environments. Biodegradation of dicarboximide fungicides in brunisolic soil were significantly enhanced by two bacterial cocultures of Providencia stuartii JD and Brevundimonas naejangsanensis J3. The cocultures degraded 98.42 %, 95.44 %, and 96.81 % of 50 mg/L dimethachlon, iprodione, and procymidone in liquid culture within 6 d respectively, whose efficiency was 1.23 and 1.26, 1.25 and 1.23, and 1.24 and 1.24 times of strains JD and J3, respectively. The cocultures could effectively degrade dimethachlon, iprodione and procymidone to simple products. Moreover, the cocultures immobilized in a charcoal-alginate-chitosan carrier obviously surpassed free cocultures in terms of degradability, stability and reusability. In the field brunisolic soils treated by immobilized cocultures, 96.74 % of 20.25 kg a.i./ha dimethachlon, 95.02 % of 7.50 kg a.i./ha iprodione and 96.27 % of 7.50 kg a.i./ha procymidone were degraded after 7 d, respectively. Moreover, the lower half-lifes (1.53, 1.59 and 1.57 d) by immobilized cocultures were observed, as compared to free cocultures (3.60, 4.03 and 3.92 d) and natural dissipation (21.33, 20.51 and 20.09 d). This study highlights that strains JD and J3 have significant synergetic degradation advantages in rapid bioremediation of dicarboximide fungicide contamination sites.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, College of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Department of Plant Protection, Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xiaomao Wu
- Department of Plant Protection, Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Yanyou Wu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, College of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China.
| | - Jiaohong Li
- Department of Plant Protection, Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Huaming An
- Department of Plant Protection, Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Tao Zhang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, College of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
15
|
Rizqi HD, Purnomo AS, Kamei I. Interaction and Effects of Bacteria Addition on Dichlorodiphenyltrichloroethane Biodegradation by Daedalea dickinsii. Curr Microbiol 2021; 78:668-678. [PMID: 33398445 DOI: 10.1007/s00284-020-02305-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
The residue of organochlorine pesticides (OCPs) has been a major pollution problem in our environment. Dichlorodiphenyltrichloroethane (DDT) is one of the most common persistent OCPs that continue to pose a serious risk to human health and the environment. Some treatment methods have been developed to reduce and minimize the adverse impacts of the use of DDT, including biodegradation with brown-rot fungi (BRF). However, DDT degradation using BRF has still low degradation rate and needs a long incubation time. Therefore, the ability of BRF need to be enhanced to degrade DDT. Interaction and effect of bacteria addition on biodegradation of DDT by brown-rot fungus Daedalea dickinsii were investigated. The interaction assay between D. dickinsii with bacteria addition showed that the addition of bacterium Pseudomonas aeruginosa did not provide resistance to the growth of D. dickinsii. Meanwhile, bacterium Bacillus subtilis addition has an inhibitory effect on the growth of D. dickinsii. The addition of 10 ml (1 ml = 1.05 × 109 CFU/ml bacteria cell) of P. aeruginosa and B. subtilis was able to improve DDT biodegradation by D. dickinsii from 53.61% to 96.70% and 67.60%, respectively. The highest biodegradation capability of DDT was obtained through addition of 10 ml of P. aeruginosa into the D. dickinsii culture in which the mixed cultures produce final metabolites of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU). This study indicated that the addition of P. aeruginosa can be used for optimization of DDT biodegradation by D. dickinsii.
Collapse
Affiliation(s)
- Hamdan Dwi Rizqi
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia.
| | - Ichiro Kamei
- Department of Forest and Environmental Science, Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
16
|
Purnomo AS, Sariwati A, Kamei I. Synergistic interaction of a consortium of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii for DDT biodegradation. Heliyon 2020; 6:e04027. [PMID: 32548317 PMCID: PMC7284076 DOI: 10.1016/j.heliyon.2020.e04027] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/08/2020] [Accepted: 05/15/2020] [Indexed: 01/31/2023] Open
Abstract
1,1,1-Trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) is a toxic and recalcitrant pesticide that has been greatly used to eradicate malaria mosquitos since the 1940s. However, the US Environmental Protection Agency banned and classified DDT as priority pollutants due to its negative impact on wildlife and human health. Considering its negative effects, it is necessary to develop effective methods of DDT degradation. A synergistic interaction of a consortium consisting of the brown-rot fungus Fomitopsis pinicola and the bacterium Ralstonia pickettii was adopted to degrade DDT. For the microbial consortia, F. pinicola was mixed with R. pickettii at 1, 3, 5, 7 and 10 ml (1 ml ≈ 1.44 × 1013 CFU) in a potato dextrose broth (PDB) medium to degrade DDT throughout the seven days incubation period. The degradation of DDT by only the fungus F. pinicola was roughly 42%, while by only R. pickettii was 31%. The addition of 3 ml of R. pickettii into F. pinicola culture presented appropriate optimization for efficient DDT degradation at roughly 61%. The DDT transformation pathway by co-inoculation of F. pinicola and R. pickettii showed that DDT was converted to 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD), further transformed to 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE), and then ultimately transformed to 1-chloro-2,2-bis(4-chlorophenyl) ethylene (DDMU). These metabolites are less toxic than DDT. This research showed that R. picketti synergistically interacts with F. pinicola by enhancing DDT degradation.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Atmira Sariwati
- Department of Tiongkok Traditional Medicine, Faculty of Health Science, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Jalan KH Wahid Hasyim 65, Kediri, 64114, Indonesia
| | - Ichiro Kamei
- Department of Forest and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
17
|
Chen YA, Grace Liu PW, Whang LM, Wu YJ, Cheng SS. Effect of soil organic matter on petroleum hydrocarbon degradation in diesel/fuel oil-contaminated soil. J Biosci Bioeng 2020; 129:603-612. [PMID: 31992527 DOI: 10.1016/j.jbiosc.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate the effect of soil organic matter (SOM) content levels on the biodegradation of total petroleum hydrocarbons (TPH). Batch experiments were conducted with soils with 2% or 10% organic matter that had been contaminated by diesel or fuel oil. In addition to the TPH (diesel or fuel oil) degradation efficiency, a comprehensive investigation was conducted on the TPH-degrading microbial community using molecular tools including oligonucleotide microarray technique and terminal restriction fragment length polymorphism analysis (T-RFLP). TPH was reduced from 10,000 mg/kg to 1849-4352 mg/kg dry weight soil. Higher biodegradation efficiencies and kinetic rate constants were observed in higher SOM contents. Hydrocarbon fractional analyses were conducted to explain the optimal operation with relatively low resin and aromatic fractions detected at the end of the remediation. The bacterial and fungal counts in the 10% SOM were approximately 10 CFU/g to 102 CFU/g above those in the 2% SOM, and the lowest fungal level was found when the least TPH degradability was measured. The internal transcribed spacer microarray identified the microorganisms that were introduced and proved their survival. The associated growth pattern confirmed that different kinds of contamination oils affected the microbial community diversity over time. Both the microarray and T-RFLP profiles indicated that Gordonia alkanivorans, G. desulfuricans, and Rhodococcus erythoropolis were the dominant bacteria, while Fusarium oxysporum and Aspergillus versicolor were the dominant fungi. The T-RFLP-derived nonmetric multidimensional scaling concluded that the dynamics of the microbial communities were impacted by the TPH degradation stages.
Collapse
Affiliation(s)
- Yun-An Chen
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Pao-Wen Grace Liu
- Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, No. 89 Wenhua 1st Street, Rende District, Tainan County 71703, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Yi-Ju Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Sheng-Shung Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| |
Collapse
|
18
|
Horel A, Schiewer S. Microbial Degradation of Different Hydrocarbon Fuels with Mycoremediation of Volatiles. Microorganisms 2020; 8:microorganisms8020163. [PMID: 31979290 PMCID: PMC7074729 DOI: 10.3390/microorganisms8020163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Naturally occurring microorganisms in soil matrices play a significant role in overall hydrocarbon contaminant removal. Bacterial and fungal degradation processes are major contributors to aerobic remediation of surface contaminants. This study investigated degradation of conventional diesel, heating diesel fuel, synthetic diesel (Syntroleum), fish biodiesel and a 20% biodiesel/diesel blend by naturally present microbial communities in laboratory microcosms under favorable environmental conditions. Visible fungal remediation was observed with Syntroleum and fish biodiesel contaminated samples, which also showed the highest total hydrocarbon mineralization (>48%) during the first 28 days of the experiment. Heating diesel and conventional diesel fuels showed the lowest total hydrocarbon mineralization with 18-23% under favorable conditions. In concurrent experiments with growth of fungi suspended on a grid in the air space above a specific fuel with little or no soil, fungi were able to survive and grow solely on volatile hydrocarbon compounds as a carbon source. These setups involved negligible bacterial degradation for all five investigated fuel types. Fungal species able to grow on specific hydrocarbon substrates were identified as belonging to the genera of Giberella, Mortierella, Fusarium, Trichoderma, and Penicillium.
Collapse
Affiliation(s)
- Agota Horel
- Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Herman O. St. 15, 1022 Budapest, Hungary
- Correspondence: ; Tel.: +36-1212-2265
| | - Silke Schiewer
- Civil and Environmental Engineering Department, Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775-5900, USA;
| |
Collapse
|
19
|
Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Appolinario LR, Tschoeke D, Paixão RVS, Venas T, Calegario G, Leomil L, Silva BS, Thompson CC, Thompson FL. Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:295-304. [PMID: 30901643 DOI: 10.1016/j.envpol.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.
Collapse
Affiliation(s)
- Luciana R Appolinario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - Biomedical Engineer Program - COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Raphael V S Paixão
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tainá Venas
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Leomil
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno S Silva
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Center of Technology - CT2, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Cheng Z, Zhang X, Kennes C, Chen J, Chen D, Ye J, Zhang S, Dionysiou DD. Differences of cell surface characteristics between the bacterium Pseudomonas veronii and fungus Ophiostoma stenoceras and their different adsorption properties to hydrophobic organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2095-2106. [PMID: 30290351 DOI: 10.1016/j.scitotenv.2018.09.337] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/22/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The first step of microbial biodegradation is the adsorption of pollutants on the microorganisms' surface, which is determined by the microorganism type and pollutant hydrophobicity. One fungus Ophiostoma stenoceras LLC and one bacterium Pseudomonas veronii ZW were chosen for the investigation of cell surface hydrophobicity and adsorption abilities to various organic compounds. Results showed that the fungus could better capture and adsorb organic compounds in liquid and gas phases, and the adsorption was a physical monolayer adsorption process. Much smaller partition coefficient for gas-fungus suggested that direct gaseous adsorption was preferred. The XPS (X-ray photoelectron spectroscopy) characterization further confirmed that several functional groups changed after the adsorption of compounds. The time taken for complete degradation of hexane, tetrahydrofuran and chlorobenzene was shorter with the addition of O. stenoceras LLC. Such findings are useful in exploring the special cell surface of fungus in adsorption and bioenhancement for organic treatment of organic contaminants using bacteria.
Collapse
Affiliation(s)
- Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China; Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| | - Xiaomin Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Science, University of La Coruna, 15001, Spain
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China.
| | - Dongzhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310009, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|
22
|
Ghorbannezhad H, Moghimi H, Dastgheib SMM. Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:434-439. [PMID: 30144703 DOI: 10.1016/j.ecoenv.2018.08.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The use of potent microbial mixed cultures is a promising method for the bioremediation of recalcitrant compounds. In this study, eight molds, three yeasts, and four bacterial isolates were screened from an aged oil-polluted area. An oil degradation assay with various combinations including Bacterial Mixed Culture (BMC), Fungal Mixed Culture (FMC), Fungal-Bacterial Mixed Culture (TMC), and Sequential Fungal-Bacterial Mixed Culture (SMC) was investigated. The results indicated that the SMC culture had the highest yield of degradation (65.96%) in comparison with the degradation yields of TMC, FMC and BMC, which were 59.04%, 56.64%, and 47.56%, respectively. The degradation of saturates, aromatics, resins, and asphaltenes in the crude oil found using the Iatroscan system were, as follows: 64.21%, and 67.63% for aromatics, 72.90%, and 73.59% for saturates, and 53.88% and 58.25% for resins with respect to the TMC and SMC cultures as the superior mixed cultures. The growth rates of yeasts, molds, and bacteria in the TMC and SMC cultures were compared for further evaluation of the role of each microorganism in the degradation. Our findings support the use of mixed cultures in the bioremediation of recalcitrant petroleum pollution.
Collapse
Affiliation(s)
- Hassan Ghorbannezhad
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
23
|
Kamyabi A, Nouri H, Moghimi H. Characterization of pyrene degradation and metabolite identification by Basidioascus persicus and mineralization enhancement with bacterial-yeast co-culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:471-477. [PMID: 30075450 DOI: 10.1016/j.ecoenv.2018.07.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we introduce pyrene degrader halotolerant yeast, Basidioascus persicus EBL-C16 and characterize its growth in different salt concentrations. Investigation of the removal of different concentrations of pyrene showed that B. persicus EBL-C16 was able to eliminate 50-90% of pyrene in the presence of 2.5% salt and also mineralize phenanthrene and anthracene. Growth and depletion kinetics of 500 mg L-1 of pyrene removal revealed 79% degradation and the growth rate reached 1.4 g L-1 of dry weight, decomposition constant rate was obtained as 0.074 day-1 and the half-life was 9.33 days. When minimal medium was replaced with Persian Gulf water, 48% increase in pyrene removal was detected by yeast strain. The mass spectrometry of the treated samples specified the phthalic acid pathway as the metabolic pathway of pyrene degradation by B. persicus. Study of the synergistic effect of using rhamnolipid and co-culture of yeast with Pseudomonas putida ATCC 12633 revealed that the combination of both of them with B. persicus increased 21% pyrene elimination. The findings of this study can be used to comprehend the mechanisms of oil hydrocarbon degradation by yeasts. Furthermore, the results demonstrated the promising potential of yeast-bacteria co-culture for cleaning of oil spills in marine and saline soil contaminated areas.
Collapse
Affiliation(s)
- A Kamyabi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - H Nouri
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - H Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
24
|
Muangchinda C, Rungsihiranrut A, Prombutara P, Soonglerdsongpha S, Pinyakong O. 16S metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:119-127. [PMID: 29870896 DOI: 10.1016/j.jhazmat.2018.05.062] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
A bacterial consortium, named SWO, was enriched from crude oil-contaminated seawater from Phrao Bay in Rayong Province, Thailand, after a large oil spill in 2013. The bacterial consortium degraded a polycyclic aromatic hydrocarbon (PAH) mixture consisting of phenanthrene, anthracene, fluoranthene, and pyrene (50 mg L-1 each) by approximately 73%, 69%, 52%, and 48%, respectively, within 21 days. This consortium exhibited excellent adaptation to a wide range of environmental conditions. It could degrade a mixture of four PAHs under a range of pH values (4.0-9.0), temperatures (25 °C-37 °C), and salinities (0-10 g L-1 with NaCl). In addition, this consortium degraded 20-30% of benzo[a]pyrene and perylene (10 mg L-1 each), high molecular weight PAHs, in the presence of other PAHs within 35 days, and degraded 40% of 2% (v/v) crude oil within 20 days. The 16S rRNA gene amplicon sequencing analysis demonstrated that Pseudomonas and Methylophaga were the dominant genera of consortium SWO in almost all treatments, while Pseudidiomarina, Thalassospira and Alcanivorax were predominant under higher salt concentrations. Moreover, Pseudomonas and Alcanivorax were dominant in the crude oil-degradation treatment. Our results suggest that the consortium SWO maintained its biodegradation ability by altering the bacterial community profile upon encountering changes in the environmental conditions.
Collapse
Affiliation(s)
- Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand
| | - Adisan Rungsihiranrut
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand
| | - Suwat Soonglerdsongpha
- Environmental Technology Research Department, PTT Research and Technology Institute, PTT Public Company Limited, Ayutthaya, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Thailand; Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Thailand.
| |
Collapse
|
25
|
Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. ENERGIES 2018. [DOI: 10.3390/en11071675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Ridley CM, Voordouw G. Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands. FEMS Microbiol Ecol 2018; 94:4983121. [DOI: 10.1093/femsec/fiy073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
- Christina M Ridley
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
27
|
Marín F, Navarrete H, Narvaez-Trujillo A. Total Petroleum Hydrocarbon Degradation by Endophytic Fungi from the Ecuadorian Amazon. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.812070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. CHEMOSPHERE 2017; 188:280-291. [PMID: 28888116 DOI: 10.1016/j.chemosphere.2017.09.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 05/22/2023]
Abstract
Control and prevention of environmental pollution has become a worldwide issue of concern. Aromatic hydrocarbons including benzene, toluene, ethyl benzene, xylene (BTEX) and polyaromatic hydrocarbons (PAHs) are persistent organic pollutants (POPs), released into the environment mainly by exploration activities of petroleum industry. These pollutants are mutagenic, carcinogenic, immunotoxic and teratogenic to lower and higher forms of life i.e. microorganisms to humans. According to the International Agency for Research on Cancer (IARC) and United States Environmental Protection Agency (U.S. EPA), Benzo[a]pyrene (BaP) is carcinogenic in laboratory animals and humans. Aromatic hydrocarbons are highly lipid soluble and thus readily absorbed from environment in gastrointestinal tract of mammals. Treatment and remediation of petroleum refinery waste have been shown either to reduce or to eliminate genotoxicity of these pollutants. Bioremediation by using microorganisms to treat this waste is showing a promising technology as it is safe and cost-effective option among various technologies tested. The main aim of this review is to provide contemporary information on variety of aromatic hydrocarbons present in crude oil (with special focus to mono- and poly-aromatic hydrocarbons), exposure routes and their adverse effects on humans. This review also provides a synthesis of scientific literature on remediation technologies available for aromatic hydrocarbons, knowledge gaps and future research developments in this field.
Collapse
Affiliation(s)
- Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Center of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, S.A.S. Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
29
|
Abilities of Co-cultures of Brown-Rot Fungus Fomitopsis pinicola and Bacillus subtilis on Biodegradation of DDT. Curr Microbiol 2017. [DOI: 10.1007/s00284-017-1286-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Campeão ME, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson FL, Thompson CC. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation. Front Microbiol 2017; 8:1019. [PMID: 28659874 PMCID: PMC5468453 DOI: 10.3389/fmicb.2017.01019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 12/05/2022] Open
Abstract
One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.
Collapse
Affiliation(s)
- Mariana E Campeão
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Reis
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Leomil
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Louisi de Oliveira
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Koko Otsuki
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Piero Gardinali
- Department of Chemistry, Florida International University, MiamiFL, United States
| | - Oliver Pelz
- BP Exploration & Production Inc., HoustonTX, United States
| | - Rogerio Valle
- SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
31
|
Zhao OY, Zhang XN, Feng SD, Zhang LX, Shi W, Yang ZX, Chen MM, Fang XD. Starch-enhanced degradation of HMW PAHs by Fusarium sp. in an aged polluted soil from a coal mining area. CHEMOSPHERE 2017; 174:774-780. [PMID: 28196686 DOI: 10.1016/j.chemosphere.2016.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The present study used strain ZH-H2 (Fusarium sp.) isolated by our group as the PAH-degrading strain and 5-6-rings PAHs as degradation objects. The soil incubation experiment was carried out to investigate the starch-enhanced degradation effects of HMW PAHs by Fusarium sp. in an Aged Polluted Soil from a Coal Mining Area. The results showed that the removal rates of BaP, InP and BghiP increased with increasing inoculation rate of ZH-H2 in the unsterile aged polluted soil of coal mining area, with the exception of BbF degradation which increased in the H2 treatment and then decreased. Different addition dosage of starch apparently resulted in degradation of 4 PAHs in soil, with removal rates of 14.47% for BaP, 23.83% for DbA, 30.77% for BghiP and 31.00% for InP obtained with treatment D2, respectively higher than in treatment D1. So starch addition apparently enhanced the degradation of the 4 PAHs, especially InP and BghiP, by native microbes in the aged HMW PAH-polluted soil. By adding starch to these aged polluted soils with inoculated strain ZH-H2, HMW-PAHs degradation was further improved and addition of 0.5 g kg-1 starch to soils with 1.0 g kg-1 Fusarium ZH-H2 (D2 + H2) performed best to the 4 HMW-PAHs in all of these combination treatments by a factor of up to 3.09, depending on the PAH. We found that the highest polyphenol oxidase activities under D2 + H2 treatments are consistent with the results of removal rates of 4 PAHs. Our findings suggest that the combination of Fusarium sp. ZH-H2 and starch offers a suitable alternative for bioremediation of aged PAH-contaminated soil in coal mining areas, with a recommended inoculation size of 0.5 g Fusarium sp. ZH-H2 and addition of 0.5 g kg-1 starch per kg soil.
Collapse
Affiliation(s)
- Ou-Ya Zhao
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China; Hebei Academy of Agriculture and forestry Sciences, Shijiazhuang, 050050, P.R.China
| | - Xue-Na Zhang
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| | - Sheng-Dong Feng
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| | - Li-Xiu Zhang
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| | - Wei Shi
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| | - Zhi-Xin Yang
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China.
| | - Miao-Miao Chen
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| | - Xue-Dan Fang
- Key Laboratory for Farmland Eco-Environment, Hebei Province and College of Resource and Environmental Sciences, Agricultural University of Hebei, Baoding, PR China
| |
Collapse
|
32
|
Varjani SJ. Microbial degradation of petroleum hydrocarbons. BIORESOURCE TECHNOLOGY 2017; 223:277-286. [PMID: 27789112 DOI: 10.1016/j.biortech.2016.10.037] [Citation(s) in RCA: 512] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 05/14/2023]
Abstract
Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.
Collapse
Affiliation(s)
- Sunita J Varjani
- School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
33
|
Sharma A, Singh SB, Sharma R, Chaudhary P, Pandey AK, Ansari R, Vasudevan V, Arora A, Singh S, Saha S, Nain L. Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:728-736. [PMID: 27558829 DOI: 10.1016/j.jenvman.2016.08.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Microbial degradation is a useful tool to prevent chemical pollution in soil. In the present study, in-situ bioremediation of polyaromatic hydrocarbons (PAHs) by microbial consortium consisting of Serratia marcescens L-11, Streptomyces rochei PAH-13 and Phanerochaete chrysosporium VV-18 has been reported. In preliminary studies, the consortium degraded nearly 60-70% of PAHs in broth within 7 days under controlled conditions. The same consortium was evaluated for its competence under natural conditions by amending the soil with ammonium sulphate, paddy straw and compost. Highest microbial activity in terms of dehydrogenase, FDA hydrolase and aryl esterase was recorded on the 5(th) day. The degradation rate of PAHs significantly increased up to 56-98% within 7 days under in-situ however almost complete dissipation (83.50-100%) was observed on the 30(th) day. Among all the co-substrates evaluated, faster degradation of PAHs was observed in compost amended soil wherein fluorene, anthracene, phenanthrene and pyrene degraded with half-life of 1.71, 4.70, 2.04 and 6.14 days respectively. Different degradation products formed were also identified by GC-MS. Besides traces of parent PAHs eleven non-polar and five polar products were identified by direct and silylation reaction respectively. Various products formed indicated that consortium was capable to degrade PAHs by oxidation to mineralization.
Collapse
Affiliation(s)
- Anamika Sharma
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shashi Bala Singh
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Richa Sharma
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Priyanka Chaudhary
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Alok Kumar Pandey
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Raunaq Ansari
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Venugopal Vasudevan
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anju Arora
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Surender Singh
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Supradip Saha
- Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
34
|
Zhou J, Zhang R, Liu F, Yong X, Wu X, Zheng T, Jiang M, Jia H. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. BIORESOURCE TECHNOLOGY 2016; 217:44-49. [PMID: 26944458 DOI: 10.1016/j.biortech.2016.02.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Laboratory-scale reactors, in which the pH could be auto-adjusted, were employed to investigate the mesophilic methane fermentation with pig manure (7.8% total solids) at pH 6.0, 7.0, and 8.0. Results showed that the performance of anaerobic digestion was strongly dependent on pH value. Biogas production and methane content at neutral pH 7.0 were significantly higher (16,607mL, 51.81%) than those at pH 6.0 (6916mL, 42.9%) and 8.0 (9739mL, 35.6%). Denaturing gradient gel electrophoresis fingerprinting and Shannon's index indicated that the samples contained highly diverse microbial communities. The major genus at pH 7.0 was Methanocorpusculum, compared with that was Methanosarcina at both pH 6.0 and 8.0. Our research revealed that cultures maintained at pH 7.0 could support increased biogas production, which has significant implications for the scale-up biogas engineering.
Collapse
Affiliation(s)
- Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fenwu Liu
- Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoyu Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiayuan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tao Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
35
|
Czaplicki LM, Gunsch CK. Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics. JOURNAL OF ENVIRONMENTAL ENGINEERING (NEW YORK, N.Y.) 2016; 142:10.1061/(ASCE)EE.1943-7870.0001141. [PMID: 28348455 PMCID: PMC5364726 DOI: 10.1061/(asce)ee.1943-7870.0001141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/31/2016] [Indexed: 05/30/2023]
Abstract
Bioremediation is generally viewed as a cost effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from roots in biology and medicine to its current status in environmental engineering including potential future directions in commercial application.
Collapse
Affiliation(s)
- Lauren M. Czaplicki
- Ph.D. Candidate, Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708-0287 USA
| | - Claudia K. Gunsch
- Associate Professor, Department of Civil & Environmental Engineering, Duke University, Durham, NC 27708-0287 USA
| |
Collapse
|
36
|
Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 2016; 38:1-8. [DOI: 10.1016/j.copbio.2015.12.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
|
37
|
Zhou J, Yan BH, Wang Y, Yong XY, Yang ZH, Jia HH, Jiang M, Wei P. Effect of steam explosion pretreatment on the anaerobic digestion of rice straw. RSC Adv 2016. [DOI: 10.1039/c6ra15330e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Steam explosion pretreatment on the anaerobic digestion of rice straw.
Collapse
Affiliation(s)
- J. Zhou
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - B. H. Yan
- Lab of Waste Valorisation and Water Reuse
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Y. Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - X. Y. Yong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - Z. H. Yang
- Key Laboratory of Material and Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - H. H. Jia
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- Bioenergy Research Institute
| | - M. Jiang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - P. Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
38
|
Biswas B, Sarkar B, Rusmin R, Naidu R. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. ENVIRONMENT INTERNATIONAL 2015; 85:168-181. [PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/29/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Ruhaida Rusmin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Faculty of Applied Science, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000, Malaysia
| | - Ravi Naidu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
39
|
Chen B, Pei N, Huang J, Liu S, Zhang N, Xiao Y, Pan Y. Removal of Polycyclic Aromatic Hydrocarbons from Precipitation in an Urban Forest of Guangzhou, South China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:240-245. [PMID: 26021616 DOI: 10.1007/s00128-015-1567-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations and fluxes were measured monthly in situ from rain events in an urban forest in the megapolitan city Guangzhou, China, to investigate impacts of forest canopy and soils on PAHs. Mean Σ9-PAH concentrations were 107.5, 101.6, 106.3, 107.1 and 42.4 ng L(-1) in precipitation, throughfall, seepage water at the 30 and 60 cm soil depth, and runoff, respectively, indicating a great decrease in the form of runoff. Meanwhile, annual fluxes of total PAHs decreased from precipitation (205.9 µg m(-2) year(-1)), to throughfall (156.3 µg m(-2) year(-1)), and to seepage water (65.3 µg m(-2) year(-1) at 30-cm soil depth and 7.5 µg m(-2) year(-1) at 60-cm soil depth), but increased in runoff (34.1 µg m(-2) year(-1)). When compared to precipitation, PAH fluxes decreased by 83.4% in runoff, with 29% contributed by forest canopy and 71% by soils. Soil biodegradation explained 18.2% of PAH reduction by the surface soil layer and 34.6% by the middle soil layer.
Collapse
Affiliation(s)
- Bufeng Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China,
| | | | | | | | | | | | | |
Collapse
|
40
|
Vigueras G, Shirai K, Hernández-Guerrero M, Morales M, Revah S. Growth of the fungus Paecilomyces lilacinus with n-hexadecane in submerged and solid-state cultures and recovery of hydrophobin proteins. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Eubacterial and archaeal community characteristics in the man-made pit mud revealed by combined PCR-DGGE and FISH analyses. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Adetutu E, Weber J, Aleer S, Dandie CE, Aburto-Medina A, Ball AS, Juhasz AL. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:847-853. [PMID: 23454918 DOI: 10.1016/j.jhazmat.2013.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability.
Collapse
Affiliation(s)
- Eric Adetutu
- School of Biological Sciences, Flinders University, Adelaide, South Australia, 5001, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Characterization of eubacterial and archaeal community diversity in the pit mud of Chinese Luzhou-flavor liquor by nested PCR–DGGE. World J Microbiol Biotechnol 2013; 30:605-12. [DOI: 10.1007/s11274-013-1472-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|