1
|
Muigano MN, Mauti GO, Anami SE, Onguso JM. Advances and challenges in polyhydroxyalkanoates (PHA) production using Halomonas species: A review. Int J Biol Macromol 2025; 309:142850. [PMID: 40188920 DOI: 10.1016/j.ijbiomac.2025.142850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Plastic waste pollution is one of the major threats to sustainable development. Biodegradable polymers and biopolymers such as polyhydroxyalkanoates (PHAs) offer suitable alternatives for replacing synthetic plastics. PHAs are produced by diverse bacteria species and archaea as storage compounds for utilization as carbon and energy sources. Halomonas species have emerged as attractive microbial cell factories for biosynthesis of PHAs due to their metabolic versality, ability to valorize diverse feedstock materials, and tolerance to high salinity and pH that allows fermentation in contamination-resistant conditions. In recent years, there has been great attention to the use of Halomonas species in PHA biosynthesis and genetic engineering efforts for enhanced production. This article provides a discussion of the current state of knowledge on production of polyhydroxyalkanoates by Halomonas species. It includes an overview of PHA biosynthesis mechanisms, fermentation strategies, production with cheap substrates, exploitation of open and unsterile conditions, co-production of PHAs and other products, and advances genetic engineering efforts.
Collapse
Affiliation(s)
- Martin N Muigano
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
| | | | - Sylvester E Anami
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus M Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
2
|
Enuh BM, Aytar Çelik P, Angione C. Genome-Scale Metabolic Modeling of Halomonas elongata 153B Explains Polyhydroxyalkanoate and Ectoine Biosynthesis in Hypersaline Environments. Biotechnol J 2024; 19:e202400267. [PMID: 39380500 DOI: 10.1002/biot.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Halomonas elongata thrives in hypersaline environments producing polyhydroxyalkanoates (PHAs) and osmoprotectants such as ectoine. Despite its biotechnological importance, several aspects of the dynamics of its metabolism remain elusive. Here, we construct and validate a genome-scale metabolic network model for H. elongata 153B. Then, we investigate the flux distribution dynamics during optimal growth, ectoine, and PHA biosynthesis using statistical methods, and a pipeline based on shadow prices. Lastly, we use optimization algorithms to uncover novel engineering targets to increase PHA production. The resulting model (iEB1239) includes 1534 metabolites, 2314 reactions, and 1239 genes. iEB1239 can reproduce growth on several carbon sources and predict growth on previously unreported ones. It also reproduces biochemical phenotypes related to Oad and Ppc gene functions in ectoine biosynthesis. A flux distribution analysis during optimal ectoine and PHA biosynthesis shows decreased energy production through oxidative phosphorylation. Furthermore, our analysis unveils a diverse spectrum of metabolic alterations that extend beyond mere flux changes to encompass heightened precursor production for ectoine and PHA synthesis. Crucially, these findings capture other metabolic changes linked to adaptation in hypersaline environments. Bottlenecks in the glycolysis and fatty acid metabolism pathways are identified, in addition to PhaC, which has been shown to increase PHA production when overexpressed. Overall, our pipeline demonstrates the potential of genome-scale metabolic models in combination with statistical approaches to obtain insights into the metabolism of H. elongata. Our platform can be exploited for researching environmental adaptation, and for designing and optimizing metabolic engineering strategies for bioproduct synthesis.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied Science, Eskişehir Osmangazi University, Eskişehir, Turkey
- Environmental Protection and Control Program, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough, UK
- National Horizons Centre, Darlington, UK
| |
Collapse
|
3
|
Ramakrishnan P, Ariyan M, Rangasamy A, Rajasekaran R, Ramasamy K, Murugaiyan S, Janahiraman V. Draft Genome Sequence of Enterobacter cloacae S23 a Plant Growth-promoting Passenger Endophytic Bacterium Isolated from Groundnut Nodule Possesses Stress Tolerance Traits. Curr Genomics 2023; 24:36-47. [PMID: 37920731 PMCID: PMC10334703 DOI: 10.2174/1389202924666230403123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/25/2023] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Aim This study aims to reveal the passenger endophytic bacterium Enterobacter cloacae S23 isolated from groundnut nodules and to underpin the molecular mechanism and genes responsible for abiotic stress tolerance. Background A variety of microorganisms that contribute to nodulation and encourage plant development activity in addition to the nodulating Rhizobium. Passenger endophytes (PE) are endophytes that accidentally penetrate the plant without any selective pressure keeping them in the interior tissue of the plant. PE possesses characteristics that encourage plant development and boost output while reducing pathogen infection and improving biotic and abiotic stress tolerance. However, there is a lack of molecular evidence on the passenger endophyte-mediated alleviation of abiotic stresses. Objective This study was formulated to reveal the draft genome sequence of Enterobacter cloacae S23, as well as genes and characteristics involved in plant growth promotion and stress tolerance. Method The data were submitted to PATRIC and the TORMES-1.0 Unicyclker tools were used to conduct a complete genome study of Enterobacter cloacae S23. The TORMES-1.0 platform was used to process the reads. RAST tool kit (RASTtk) was used to annotate the S23 sequence. The plant growth-promoting traits such as indole acetic acid production, siderophore secretion, production of extracellular polysaccharides, biofilm formation, phosphate solubilization, and accumulation of osmolytes were examined under normal, 7% NaCl and 30% polyethylene glycol amended conditions to determine their ability to withstand salt and moisture stressed conditions, respectively. Result We report the size of Enterobacter cloacae S23 is 4.82Mb which contains 4511 protein-coding sequences, 71 transfer RNA genes, and 3 ribosomal RNA with a G+C content of DNA is 55.10%. Functional analysis revealed that most of the genes are involved in the metabolism of amino acids, cofactors, vitamins, stress response, nutrient solubilization (kdp, pho, pst), biofilm formation (pga) IAA production (trp), siderophore production (luc, fhu, fep, ent, ybd), defense, and virulence. The result revealed that E. cloacae S23 exhibited multiple plant growth-promoting traits under abiotic stress conditions. Conclusion Our research suggested that the discovery of anticipated genes and metabolic pathways might characterise this bacterium as an environmentally friendly bioresource to support groundnut growth through several mechanisms of action under multi-stresses.
Collapse
Affiliation(s)
- Pavithra Ramakrishnan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Manikandan Ariyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Anandham Rangasamy
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Raghu Rajasekaran
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Krishnamoorthy Ramasamy
- Department of Crop Management, Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India
| | - SenthilKumar Murugaiyan
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Eachangkottai, India
| | - Veeranan Janahiraman
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
4
|
Park H, Faulkner M, Toogood HS, Chen GQ, Scrutton N. Online Omics Platform Expedites Industrial Application of Halomonas bluephagenesis TD1.0. Bioinform Biol Insights 2023; 17:11779322231171779. [PMID: 37200674 PMCID: PMC10185862 DOI: 10.1177/11779322231171779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/20/2023] Open
Abstract
Multi-omic data mining has the potential to revolutionize synthetic biology especially in non-model organisms that have not been extensively studied. However, tangible engineering direction from computational analysis remains elusive due to the interpretability of large datasets and the difficulty in analysis for non-experts. New omics data are generated faster than our ability to use and analyse results effectively, resulting in strain development that proceeds through classic methods of trial-and-error without insight into complex cell dynamics. Here we introduce a user-friendly, interactive website hosting multi-omics data. Importantly, this new platform allows non-experts to explore questions in an industrially important chassis whose cellular dynamics are still largely unknown. The web platform contains a complete KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis derived from principal components analysis, an interactive bio-cluster heatmap analysis of genes, and the Halomonas TD1.0 genome-scale metabolic (GEM) model. As a case study of the effectiveness of this platform, we applied unsupervised machine learning to determine key differences between Halomonas bluephagenesis TD1.0 cultivated under varied conditions. Specifically, cell motility and flagella apparatus are identified to drive energy expenditure usage at different osmolarities, and predictions were verified experimentally using microscopy and fluorescence labelled flagella staining. As more omics projects are completed, this landing page will facilitate exploration and targeted engineering efforts of the robust, industrial chassis H bluephagenesis for researchers without extensive bioinformatics background.
Collapse
Affiliation(s)
- Helen Park
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nigel Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub and BBSRC Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Abstract
Soil salinization has become a major problem for agriculture worldwide, especially because this phenomenon is continuously expanding in different regions of the world. Salinity is a complex mechanism, and in the soil ecosystem, it affects both microorganisms and plants, some of which have developed efficient strategies to alleviate salt stress conditions. Currently, various methods can be used to reduce the negative effects of this problem. However, the use of biological methods, such as plant-growth-promoting bacteria (PGPB), phytoremediation, and amendment, seems to be very advantageous and promising as a remedy for sustainable and ecological agriculture. Other approaches aim to combine different techniques, as well as the utilization of genetic engineering methods. These techniques alone or combined can effectively contribute to the development of sustainable and eco-friendly agriculture.
Collapse
|
6
|
Zhang T, Cui T, Cao Y, Li Y, Li F, Zhu D, Xing J. Whole genome sequencing of the halophilic Halomonas qaidamensis XH36, a novel species strain with high ectoine production. Antonie Van Leeuwenhoek 2022; 115:545-559. [PMID: 35243586 DOI: 10.1007/s10482-022-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022]
Abstract
Here, we report the whole genome of a novel halophilic Halomonas species strain XH36 with high ectoine production potential. The genome was 3,818,310 bp in size with a GC content of 51.97%, and contained 3533 genes, 61 tRNAs and 18 rRNAs. The phylogenetic analysis using the 16s rRNA genes, the UBCGs and the TYGS database indicated that XH36 belongs to a novel Halomonas species, which we named as Halomonas qaidamensis. Osmoadaptation related genes including Na(+) and K(+) transport and compatible solute accumulation were both present in the XH36 genome, the latter of which mainly contained ectoine, 5-hydroxyectoine and betaine. HPLC validation studies showed that H. qaidamensis XH36 accumulated ectoine to cope with salt stress, and the content of ectoine could be as high as 315 mg/g CDW under 3 mol/l NaCl. Our results show that XH36 is a new promising industrial strain for ectoine production, and the genomic analysis will guide us to better understand its salt-induced osmoadaptation mechanisms, and provide theoretical references for future application research of ectoine.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Tianqi Cui
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yaning Cao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Fenghui Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China.
| |
Collapse
|
7
|
Zhang T, Zhang X, Li Y, Yang N, Qiao L, Miao Z, Xing J, Zhu D. Study of osmoadaptation mechanisms of halophilic Halomonas alkaliphila XH26 under salt stress by transcriptome and ectoine analysis. Extremophiles 2022; 26:14. [PMID: 35229247 DOI: 10.1007/s00792-022-01256-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Halophilic bacteria such as the genus Halomonas are promising candidates in diverse industrial, agricultural and biomedical applications. Here, we successfully isolated a halophilic Halomonas alkaliphila strain XH26 from Xiaochaidan Salt Lake, and studied its osmoadaptation strategies using transcriptome and ectoine analysis. Divergent mechanisms were involved in osmoadaptation at different salinities in H. alkaliphila XH26. At moderate salinity (6% NaCl), increased transcriptions of ABC transporters related to iron (III), phosphate, phosphonate, monosaccharide and oligosaccharide import were observed. At high salinity (15% NaCl), transcriptions of flagellum assembly and cell motility were significantly inhibited. The transcriptional levels of ABC transporter genes related to iron (III) and iron3+-hydroxamate import, glycine betaine and putrescine uptake, and cytochrome biogenesis and assembly were significantly up-regulated. Ectoine synthesis and accumulation was significantly increased under salt stress, and the increased transcriptional expressions of ectoine synthesis genes ectB and ectC may play a key role in high salinity induced osmoadaptation. At extreme high salinity (18% NaCl), 5-hydroxyectoine and ectoine worked together to maintain cell survival. Together these results give valuable insights into the osmoadaptation mechanisms of H. alkaliphila XH26, and provide useful information for further engineering this specific strain for increased ectoine synthesis and related applications.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Xin Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Ning Yang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Lijuan Qiao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Zengqiang Miao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, People's Republic of China.
| |
Collapse
|
8
|
Three Microbial Musketeers of the Seas: Shewanella baltica, Aliivibrio fischeri and Vibrio harveyi, and Their Adaptation to Different Salinity Probed by a Proteomic Approach. Int J Mol Sci 2022; 23:ijms23020619. [PMID: 35054801 PMCID: PMC8775919 DOI: 10.3390/ijms23020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Osmotic changes are common challenges for marine microorganisms. Bacteria have developed numerous ways of dealing with this stress, including reprogramming of global cellular processes. However, specific molecular adaptation mechanisms to osmotic stress have mainly been investigated in terrestrial model bacteria. In this work, we aimed to elucidate the basis of adjustment to prolonged salinity challenges at the proteome level in marine bacteria. The objects of our studies were three representatives of bacteria inhabiting various marine environments, Shewanella baltica, Vibrio harveyi and Aliivibrio fischeri. The proteomic studies were performed with bacteria cultivated in increased and decreased salinity, followed by proteolytic digestion of samples which were then subjected to liquid chromatography with tandem mass spectrometry analysis. We show that bacteria adjust at all levels of their biological processes, from DNA topology through gene expression regulation and proteasome assembly, to transport and cellular metabolism. The finding that many similar adaptation strategies were observed for both low- and high-salinity conditions is particularly striking. The results show that adaptation to salinity challenge involves the accumulation of DNA-binding proteins and increased polyamine uptake. We hypothesize that their function is to coat and protect the nucleoid to counteract adverse changes in DNA topology due to ionic shifts.
Collapse
|
9
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
10
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
11
|
Chen PW, Cui ZY, Ng HS, Chi-Wei Lan J. Exploring the additive bio-agent impacts upon ectoine production by Halomonas salina DSM5928 T using corn steep liquor and soybean hydrolysate as nutrient supplement. J Biosci Bioeng 2020; 130:195-199. [PMID: 32370929 DOI: 10.1016/j.jbiosc.2020.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 11/20/2022]
Abstract
Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.
Collapse
Affiliation(s)
- Po-Wei Chen
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Zi-Yu Cui
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 32003, Taiwan.
| |
Collapse
|
12
|
Primary purification of intracellular Halomonas salina ectoine using ionic liquids-based aqueous biphasic system. J Biosci Bioeng 2020; 130:200-204. [DOI: 10.1016/j.jbiosc.2020.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022]
|
13
|
Castro-Severyn J, Pardo-Esté C, Sulbaran Y, Cabezas C, Gariazzo V, Briones A, Morales N, Séveno M, Decourcelle M, Salvetat N, Remonsellez F, Castro-Nallar E, Molina F, Molina L, Saavedra CP. Arsenic Response of Three Altiplanic Exiguobacterium Strains With Different Tolerance Levels Against the Metalloid Species: A Proteomics Study. Front Microbiol 2019; 10:2161. [PMID: 31611848 PMCID: PMC6775490 DOI: 10.3389/fmicb.2019.02161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
Exiguobacterium is a polyextremophile bacterial genus with a physiology that allows it to develop in different adverse environments. The Salar de Huasco is one of these environments due to its altitude, atmospheric pressure, solar radiation, temperature variations, pH, salinity, and the presence of toxic compounds such as arsenic. However, the physiological and/or molecular mechanisms that enable them to prosper in these environments have not yet been described. Our research group has isolated several strains of Exiguobacterium genus from different sites of Salar de Huasco, which show different resistance levels to As(III) and As(V). In this work, we compare the protein expression patterns of the three strains in response to arsenic by a proteomic approach; strains were grown in absence of the metalloid and in presence of As(III) and As(V) sublethal concentrations and the protein separation was carried out in 2D electrophoresis gels (2D-GE). In total, 999 spots were detected, between 77 and 173 of which showed significant changes for As(III) among the three strains, and between 90 and 143 for As(V), respectively, compared to the corresponding control condition. Twenty-seven of those were identified by mass spectrometry (MS). Among these identified proteins, the ArsA [ATPase from the As(III) efflux pump] was found to be up-regulated in response to both arsenic conditions in the three strains, as well as the Co-enzyme A disulfide reductase (Cdr) in the two more resistant strains. Interestingly, in this genus the gene that codifies for Cdr is found within the genic context of the ars operon. We suggest that this protein could be restoring antioxidants molecules, necessary for the As(V) reduction. Additionally, among the proteins that change their expression against As, we found several with functions relevant to stress response, e.g., Hpf, LuxS, GLpX, GlnE, and Fur. This study allowed us to shed light into the physiology necessary for these bacteria to be able to tolerate the toxicity and stress generated by the presence of arsenic in their niche.
Collapse
Affiliation(s)
- Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Yoelvis Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valentina Gariazzo
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alan Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Mathilde Decourcelle
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile.,Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, Montpellier, France
| | | | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
14
|
Steinberg LM, Kronyak RE, House CH. Coupling of anaerobic waste treatment to produce protein- and lipid-rich bacterial biomass. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:32-42. [PMID: 29198312 DOI: 10.1016/j.lssr.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Future long-term manned space missions will require effective recycling of water and nutrients as part of a life support system. Biological waste treatment is less energy intensive than physicochemical treatment methods, yet anaerobic methanogenic waste treatment has been largely avoided due to slow treatment rates and safety issues concerning methane production. However, methane is generated during atmosphere regeneration on the ISS. Here we propose waste treatment via anaerobic digestion followed by methanotrophic growth of Methylococcus capsulatus to produce a protein- and lipid-rich biomass that can be directly consumed, or used to produce other high-protein food sources such as fish. To achieve more rapid methanogenic waste treatment, we built and tested a fixed-film, flow-through, anaerobic reactor to treat an ersatz wastewater. During steady-state operation, the reactor achieved a 97% chemical oxygen demand (COD) removal rate with an organic loading rate of 1740 g d-1 m-3 and a hydraulic retention time of 12.25 d. The reactor was also tested on three occasions by feeding ca. 500 g COD in less than 12 h, representing 50x the daily feeding rate, with COD removal rates ranging from 56-70%, demonstrating the ability of the reactor to respond to overfeeding events. While investigating the storage of treated reactor effluent at a pH of 12, we isolated a strain of Halomonas desiderata capable of acetate degradation under high pH conditions. We then tested the nutritional content of the alkaliphilic Halomonas desiderata strain, as well as the thermophile Thermus aquaticus, as supplemental protein and lipid sources that grow in conditions that should preclude pathogens. The M. capsulatus biomass consisted of 52% protein and 36% lipids, the H. desiderata biomass consisted of 15% protein and 7% lipids, and the Thermus aquaticus biomass consisted of 61% protein and 16% lipids. This work demonstrates the feasibility of rapid waste treatment in a compact reactor design, and proposes recycling of nutrients back into foodstuffs via heterotrophic (including methanotrophic, acetotrophic, and thermophilic) microbial growth.
Collapse
Affiliation(s)
- Lisa M Steinberg
- Department of Geosciences and Penn State Astrobiology Research Center, 220 Deike Building, Penn State University, University Park, PA 16802, United States
| | - Rachel E Kronyak
- Department of Geosciences and Penn State Astrobiology Research Center, 220 Deike Building, Penn State University, University Park, PA 16802, United States
| | - Christopher H House
- Department of Geosciences and Penn State Astrobiology Research Center, 220 Deike Building, Penn State University, University Park, PA 16802, United States.
| |
Collapse
|
15
|
Microbial Diversity in Extreme Marine Habitats and Their Biomolecules. Microorganisms 2017; 5:microorganisms5020025. [PMID: 28509857 PMCID: PMC5488096 DOI: 10.3390/microorganisms5020025] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022] Open
Abstract
Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields.
Collapse
|
16
|
Yoruk HM, Sayar NA. Topological analysis of carbon flux during multi-stress adaptation in Halomonas sp. AAD12. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|