1
|
Toledo-Alarcón J, Ortega-Martinez E, Pavez-Jara J, Franchi O, Nancucheo I, Zuñiga-Barra H, Campos JL, Jeison D. Groundwater denitrification using electro-assisted autotrophic processes: exploring bacterial community dynamics in a single-chamber reactor. Front Bioeng Biotechnol 2025; 13:1475589. [PMID: 39912114 PMCID: PMC11794223 DOI: 10.3389/fbioe.2025.1475589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Nitrate, a major groundwater pollutant from anthropogenic activities, poses serious health risks when present in drinking water. Denitrification using bio-electrochemical reactors (BER) offers an innovative technology, eco-friendly solution for nitrate removal from groundwater. BER use electroactive bacteria to reduce inorganic compounds like nitrate and bicarbonate by transferring electrons directly from the cathode. In our work, two batch BER were implemented at 1V and 2V, using anaerobic digestate from a full-scale wastewater treatment plant as inoculum. Nitrate, nitrite, sulfate, total ammoniacal nitrogen, and 16S rRNA analysis of bacterial community, were monitored during BER operation. The results showed effective nitrate removal in all BERs, with denitrification rate at 1V and 2V higher than the Control system, where endogenous respiration drove the process. At 1V, complete nitrate conversion to N2 occurred in 4 days, while at 2V, it took 14 days. The slower rate at 2V was likely due to O2 production from water electrolysis, which competed with nitrate as final electron acceptor. Bacterial community analysis confirmed the electroactive bacteria selection like the genus Desulfosporosinus and Leptolinea, confirming electrons transfer without an electroactive biofilm. Besides, Hydrogenophaga was enhanced at 2V likely due to electrolytically produced H2. Sulfate was not reduced, and total ammoniacal nitrogen remained constant indicating no dissimilatory nitrite reduction of ammonia. These results provide a significant contribution to the scaling up of electro-assisted autotrophic denitrification and its application in groundwater remediation, utilizing a simple reactor configuration-a single-chamber, membrane-free design- and a conventional power source instead of a potentiostat.
Collapse
Affiliation(s)
| | | | - Javier Pavez-Jara
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Oscar Franchi
- Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Ñuñoa, Chile
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Héctor Zuñiga-Barra
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jose Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
2
|
Edel M, Philipp LA, Lapp J, Reiner J, Gescher J. Electron transfer of extremophiles in bioelectrochemical systems. Extremophiles 2022; 26:31. [PMID: 36222927 PMCID: PMC9556394 DOI: 10.1007/s00792-022-01279-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022]
Abstract
The interaction of bacteria and archaea with electrodes is a relatively new research field which spans from fundamental to applied research and influences interdisciplinary research in the fields of microbiology, biochemistry, biotechnology as well as process engineering. Although a substantial understanding of electron transfer processes between microbes and anodes and between microbes and cathodes has been achieved in mesophilic organisms, the mechanisms used by microbes under extremophilic conditions are still in the early stages of discovery. Here, we review our current knowledge on the biochemical solutions that evolved for the interaction of extremophilic organisms with electrodes. To this end, the available knowledge on pure cultures of extremophilic microorganisms has been compiled and the study has been extended with the help of bioinformatic analyses on the potential distribution of different electron transfer mechanisms in extremophilic microorganisms.
Collapse
Affiliation(s)
- Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Laura-Alina Philipp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Jonas Lapp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Reiner
- Karlsruhe Institute of Technology, Engler-Bunte-Institute, Karlsruhe, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany.
| |
Collapse
|
3
|
Yadav S, Singh R, Sundharam SS, Chaudhary S, Krishnamurthi S, Patil SA. Geoalkalibacter halelectricus SAP-1 sp. nov. possessing extracellular electron transfer and mineral-reducing capabilities from a haloalkaline environment. Environ Microbiol 2022; 24:5066-5081. [PMID: 36066180 DOI: 10.1111/1462-2920.16200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022]
Abstract
The extracellular electron transfer (EET)-capable electroactive microorganisms (EAMs) play crucial roles in mineral cycling and interspecies electron transfer in different environments and are used as biocatalysts in microbial electrochemical technologies. Studying EAMs from extreme environments is desired to advance the electromicrobiology discipline, understanding their unique metabolic traits with implications to extreme microbiology, and develop specific bioelectrochemical applications. Here, we present a novel haloalkaliphilic bacterium named Geoalkalibacter halelectricus SAP-1, isolated from a microbial electroactive biofilm enriched from the haloalkaline lake sediments. It is a rod-shaped Gram-negative heterotrophic anaerobe that uses various carbon and energy sources and respires on soluble and insoluble terminal electron acceptors. Besides 16S-rRNA and whole-genome-based phylogeny, the GGDC values of 21.7 %, ANI of 78.5, and 2.77 % genomic DNA GC content difference with the closest validly named species Geoalkalibacter ferrihydriticus (DSM 17813T ) confirmed its novelty. When grown with the solid-state electrode as the only electron acceptor, it produced 460±23 μA/cm2 bioelectrocatalytic current, thereby confirming its electroactivity. Further electrochemical analysis revealed the presence of membrane redox components with high formal potentials, putatively involved in the direct mode of EET. These are distinct from EET components reported for any known electroactive microorganisms, including well-studied Geobacter spp., Shewanella spp. and Desulfuromonas acetexigens. Further the capabilities of G. halelectricus SAP-1 to respire soluble as well insoluble electron acceptors including fumarate, SO4 2- , Fe3+ , and Mn4+ suggests its role in cycling these elements in haloalkaline environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Shiva S Sundharam
- Microbial Types Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| | - Srinivasan Krishnamurthi
- Microbial Types Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Knowledge City, Sector 81, SAS Nagar, Punjab, India
| |
Collapse
|
4
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
5
|
Flores-Rodriguez C, Min B. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 300:122624. [PMID: 31918296 DOI: 10.1016/j.biortech.2019.122624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
This study investigates the distribution of microbiome in microbial electrosynthesis systems at different applied voltages (0.5, 1.0, and 1.5 V) for methane production. Results revealed that more favorable conditions for methane production were observed with 1.0 V applied voltage. In Venn plots, the bioelectrodes at 1.0 V had higher numbers of unique operational taxonomic units compared to those at 0.5 and 1.5 V. Hierarchical cluster, non-metric multidimensional scaling, and principal component ordinate analyses revealed that the biocathode at 1.0 V clustered separately from the rest of the biofilms mainly because of the quantitative differences in the microbial distribution. Taxonomically, exoelectrogens (Geobacter spp.) dominated the bioanode at 1.0 V, while the syntrophic assemblages of hydrogen-producing bacteria (i.e., Bacteroidetes and Firmicutes) and hydrogen-consuming methanogens (i.e., Methanobacterium sp.) existed in the biocathode. These results suggest that the optimum applied voltage enriched specific microbial communities on the anode and cathode for enhanced methane production.
Collapse
Affiliation(s)
- Carla Flores-Rodriguez
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
6
|
Dessì P, Chatterjee P, Mills S, Kokko M, Lakaniemi AM, Collins G, Lens PNL. Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 294:122115. [PMID: 31541978 DOI: 10.1016/j.biortech.2019.122115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial communities developed from a mixed-species culture in up-flow and flow-through configurations of thermophilic (55 °C) microbial fuel cells (MFCs), and their power production from acetate, were investigated. The up-flow MFC was operated for 202 days, obtaining an average power density of 0.13 W/m3, and Tepidiphilus was the dominant transcriptionally-active microorganisms. The planktonic community developed in the up-flow MFC was used to inoculate a flow-through MFC resulting in the proliferation of Ureibacillus, whose relative abundance increased from 1 to 61% after 45 days. Despite the differences between the up-flow and flow-through MFCs, including the anode electrode, hydrodynamic conditions, and the predominant microorganism, similar (p = 0.05) volumetric power (0.11-0.13 W/m3), coulombic efficiency (16-18%) and acetate consumption rates (55-69 mg/L/d) were obtained from both. This suggests that though MFC design can shape the active component of the thermophilic microbial community, the consortia are resilient and can maintain similar performance in different MFC configurations.
Collapse
Affiliation(s)
- Paolo Dessì
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Pritha Chatterjee
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - Simon Mills
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Marika Kokko
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
7
|
Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani RK, Gadhamshetty V. Extremophiles for microbial-electrochemistry applications: A critical review. BIORESOURCE TECHNOLOGY 2018; 255:318-330. [PMID: 29433771 DOI: 10.1016/j.biortech.2018.01.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Bhuvan Vemuri
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Navanietha Rathinam
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Rajesh K Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States; Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States.
| |
Collapse
|
8
|
Zhang L, Gu J, Wang X, Zhang R, Tuo X, Guo A, Qiu L. Fate of antibiotic resistance genes and mobile genetic elements during anaerobic co-digestion of Chinese medicinal herbal residues and swine manure. BIORESOURCE TECHNOLOGY 2018; 250:799-805. [PMID: 30001586 DOI: 10.1016/j.biortech.2017.10.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Swine manure is an important reservoir for antibiotic resistance genes (ARGs) but anaerobic co-digestion (AcoD) can potentially reduce the abundance of these ARGs. However, few studies have considered the effects of Chinese medicinal herbal residues (CMHRs) on the variations in ARGs and mobile genetic elements (MGEs) during AcoD. Thus, this study explored the fate of ARGs and MGEs during the AcoD of CMHRs and swine manure. The results showed that CMHRs effectively reduced the abundances of the main ARGs (excluding ermF, qnrA, and tetW) and four MGEs (by 36.7-96.5%) after AcoD. Redundancy analysis showed that changes in the bacterial community mainly affected the fate of ARGs rather than horizontal gene transfer by MGEs. Network analysis indicated that 17 bacterial genera were possible hosts of ARGs. The results of this study suggest that AcoD with CMHRs could be employed to remove some ARGs and MGEs from swine manure.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaxia Tuo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aiyun Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qiu
- Northwest A&F University, College of Mechanical and Electrical Engineering, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Dessì P, Porca E, Haavisto J, Lakaniemi AM, Collins G, Lens PNL. Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Adv 2018; 8:3069-3080. [PMID: 35541202 PMCID: PMC9077550 DOI: 10.1039/c7ra12316g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anode-attached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-attached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m-3. A lower maximum power was generated in the thermophilic MFC (0.2 W m-3), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms.
Collapse
Affiliation(s)
- Paolo Dessì
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Estefania Porca
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Johanna Haavisto
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Aino-Maija Lakaniemi
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Piet N L Lens
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
- UNESCO-IHE, Institute for Water Education Westvest 7 2611AX Delft The Netherlands
| |
Collapse
|
10
|
Yan W, Shen N, Xiao Y, Chen Y, Sun F, Kumar Tyagi V, Zhou Y. The role of conductive materials in the start-up period of thermophilic anaerobic system. BIORESOURCE TECHNOLOGY 2017; 239:336-344. [PMID: 28531859 DOI: 10.1016/j.biortech.2017.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 05/28/2023]
Abstract
The major obstacle for thermophilic anaerobic digestion (TAD) is the inhibited microorganism activity and process instability during the start-up period. This study proposed a strategy to accelerate and stabilize the thermophilic reactors start-up via adding conductive materials. The results show that methane production rate in conductive materials supplemented (CMS) reactors was almost two times higher than the control reactors. Caloramator sp., a candidate of electroactive bacteria, was significantly enriched in the carbon nano-tube (CNT) supplemented groups (12.89%) as compared to control groups (1.26% only). Together with the doubled abundance of Methanosaeta and Methanosarcina methanogens in CMS groups, it is highly possible Caloramator sp. and Methanosaeta/Methanosarcina have established syntrophic direct interspecies electron transfer (DIET), via adopting conductive materials as electron conduit. Microbial community analysis indicates DIET was likely to be an unstable condition triggered syntrophic process. This study demonstrated that conductive materials could promote microbial activity and shorten start-up period for thermophilic anaerobic system.
Collapse
Affiliation(s)
- Wangwang Yan
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Yeyuan Xiao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Yun Chen
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Faqian Sun
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Vinay Kumar Tyagi
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore.
| |
Collapse
|
11
|
Hari AR, Venkidusamy K, Katuri KP, Bagchi S, Saikaly PE. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells - Influence of Acetate and Propionate Concentration. Front Microbiol 2017; 8:1371. [PMID: 28775719 PMCID: PMC5517442 DOI: 10.3389/fmicb.2017.01371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m2), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m2; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m2), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m2; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor's performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its possible role in maintaining functional stability of MECs fed with low and high concentrations of acetate and propionate. Taken together, these results provide new insights on the microbial community dynamics and its correlation to performance in MECs fed with different concentrations of acetate and propionate, which are important volatile fatty acids in wastewater.
Collapse
Affiliation(s)
- Ananda Rao Hari
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson LakesSA, Australia
| | - Krishna P Katuri
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Samik Bagchi
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, LawrenceKS, United States
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| |
Collapse
|
12
|
Dopson M, Ni G, Sleutels THJA. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 2015; 40:164-81. [PMID: 26474966 PMCID: PMC4802824 DOI: 10.1093/femsre/fuv044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 11/12/2022] Open
Abstract
Microbial electrochemical systems exploit the metabolism of microorganisms to generate electrical energy or a useful product. In the past couple of decades, the application of microbial electrochemical systems has increased from the use of wastewaters to produce electricity to a versatile technology that can use numerous sources for the extraction of electrons on the one hand, while on the other hand these electrons can be used to serve an ever increasing number of functions. Extremophilic microorganisms grow in environments that are hostile to most forms of life and their utilization in microbial electrochemical systems has opened new possibilities to oxidize substrates in the anode and produce novel products in the cathode. For example, extremophiles can be used to oxidize sulfur compounds in acidic pH to remediate wastewaters, generate electrical energy from marine sediment microbial fuel cells at low temperatures, desalinate wastewaters and act as biosensors of low amounts of organic carbon. In this review, we will discuss the recent advances that have been made in using microbial catalysts under extreme conditions and show possible new routes that extremophilic microorganisms open for microbial electrochemical systems.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Gaofeng Ni
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Tom H J A Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
13
|
Gagliano M, Braguglia C, Petruccioli M, Rossetti S. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 2015; 91:fiv018. [DOI: 10.1093/femsec/fiv018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
|
14
|
Draft Genome Sequence of the Hydrogen- and Ethanol-Producing Anaerobic Alkalithermophilic Bacterium Caloramator celer. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00471-13. [PMID: 23868125 PMCID: PMC3715667 DOI: 10.1128/genomea.00471-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caloramator celer strain JW/YL-NZ35 is a Gram-positive thermophilic, alkalitolerant, and strictly anaerobic bacterium capable of producing hydrogen and ethanol under extreme conditions. The draft genome sequence presented here will provide valuable information to further explore the physiology of this species and its potential for biofuel production.
Collapse
|