1
|
Wang B, Wang Y, Zhou X, Gao XD, Fujita M, Li Z. Highly efficient expression of Rasamsonia emersonii lipase in Pichia pastoris: characterization and gastrointestinal simulated digestion in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5603-5613. [PMID: 38363126 DOI: 10.1002/jsfa.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Acidic lipases with high catalytic activities under acidic conditions have important application values in the food, feed and pharmaceutical industries. However, the availability of acidic lipases is still the main obstacle to their industrial applications. Although a novel acidic lipase Rasamsonia emersonii (LIPR) was heterologously expressed in Escherichia coli, the expression level was unsatisfactory. RESULTS To achieve the high-efficiency expression and secretion of LIPR in Pichia pastoris GS115, the combinatorial optimization strategy was adopted including gene codon preference, signal peptide, molecular chaperone co-expression and disruption of vacuolar sorting receptor VPS10. The activity of the combinatorial optimization engineered strain in a shake flask reached 1480 U mL-1, which was 8.13 times greater than the P. pastoris GS115 parental strain. After high-density fermentation in a 5-L bioreactor, the highest enzyme activity reached as high as 11 820 U mL-1. LIPR showed the highest activity at 40 °C and pH 4.0 in the presence of Ca2+ ion. LIPR exhibited strong tolerance to methanol, indicating its potential application in biodiesel biosynthesis. Moreover, the gastrointestinal digestion simulation results demonstrated that LIPR was tolerant to pepsin and trypsin, but its activity was inhibited by sodium taurodeoxycholate. CONCLUSION This study provided an effective approach for the high expression of acidic lipase LIPR. LIPR was more appropriate for lipid digestion in the stomach than in intestine according to the gastrointestinal digestion simulation results. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Buqing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-Core Research, Gifu University, Gifu, Japan
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Yang S, Song L, Wang J, Zhao J, Tang H, Bao X. Engineering Saccharomyces cerevisiae for efficient production of recombinant proteins. ENGINEERING MICROBIOLOGY 2024; 4:100122. [PMID: 39628786 PMCID: PMC11611019 DOI: 10.1016/j.engmic.2023.100122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2024]
Abstract
Saccharomyces cerevisiae is an excellent microbial cell factory for producing valuable recombinant proteins because of its fast growth rate, robustness, biosafety, ease of operability via mature genomic modification technologies, and the presence of a conserved post-translational modification pathway among eukaryotic organisms. However, meeting industrial and market requirements with the current low microbial production of recombinant proteins can be challenging. To address this issue, numerous efforts have been made to enhance the ability of yeast cell factories to efficiently produce proteins. In this review, we provide an overview of recent advances in S. cerevisiae engineering to improve recombinant protein production. This review focuses on the strategies that enhance protein production by regulating transcription through promoter engineering, codon optimization, and expression system optimization. Additionally, we describe modifications to the secretory pathway, including engineered protein translocation, protein folding, glycosylation modification, and vesicle trafficking. Furthermore, we discuss global metabolic pathway optimization and other relevant strategies, such as the disruption of protein degradation, cell wall engineering, and random mutagenesis. Finally, we provide an outlook on the developmental trends in this field, offering insights into future directions for improving recombinant protein production in S. cerevisiae.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyun Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Wang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianzhi Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongting Tang
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Wang Y, Wang B, Gao Y, Nakanishi H, Gao XD, Li Z. Highly efficient expression and secretion of human lysozyme using multiple strategies in Pichia pastoris. Biotechnol J 2023; 18:e2300259. [PMID: 37470505 DOI: 10.1002/biot.202300259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Human lysozyme (hLYZ), an emerging antibacterial agent, has extensive application in the food and pharmaceutical industries. However, the source of hLYZ is particularly limited. RESULTS To achieve highly efficient expression and secretion of hLYZ in Pichia pastoris, multiple strategies including G418 sulfate screening, signal sequence optimization, vacuolar sorting receptor VPS10 disruption, and chaperones/transcription factors co-expression were applied. The maximal enzyme activity of extracellular hLYZ in a shaking flask was 81,600 ± 5230 U mL-1 , which was about five times of original strain. To further reduce the cost, the optimal medium RDMY was developed and the highest hLYZ activity reached 352,000 ± 16,696.5 U mL-1 in a 5 L fermenter. CONCLUSION This research provides a very useful and cost-effective approach for the hLYZ production in P. pastoris and can also be applied to the production of other recombinant proteins.
Collapse
Affiliation(s)
- Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Buqing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Minnaar L, den Haan R. Engineering natural isolates of Saccharomyces cerevisiae for consolidated bioprocessing of cellulosic feedstocks. Appl Microbiol Biotechnol 2023; 107:7013-7028. [PMID: 37688599 PMCID: PMC10589140 DOI: 10.1007/s00253-023-12729-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/11/2023]
Abstract
Saccharomyces cerevisiae has gained much attention as a potential host for cellulosic bioethanol production using consolidated bioprocessing (CBP) methodologies, due to its high-ethanol-producing titres, heterologous protein production capabilities, and tolerance to various industry-relevant stresses. Since the secretion levels of heterologous proteins are generally low in domesticated strains of S. cerevisiae, natural isolates may offer a more diverse genetic background for improved heterologous protein secretion, while also displaying greater robustness to process stresses. In this study, the potential of natural and industrial S. cerevisiae strains to secrete a core set of cellulases (CBH1, CBH2, EG2, and BGL1), encoded by genes integrated using CRISPR/Cas9 tools, was evaluated. High levels of heterologous protein production were associated with a reduced maximal growth rate and with slight changes in overall strain robustness, compared to the parental strains. The natural isolate derivatives YI13_BECC and YI59_BECC displayed superior secretion capacity for the heterologous cellulases at high incubation temperature and in the presence of acetic acid, respectively, compared to the reference industrial strain MH1000_BECC. These strains also exhibited multi-tolerance to several fermentation-associated and secretion stresses. Cultivation of the strains on crystalline cellulose in oxygen-limited conditions yielded ethanol concentrations in the range of 4-4.5 g/L, representing 35-40% of the theoretical maximum ethanol yield after 120 h, without the addition of exogenous enzymes. This study therefore highlights the potential of these natural isolates to be used as chassis organisms in CBP bioethanol production. KEY POINTS: • Process-related fermentation stresses influence heterologous protein production. • Transformants produced up to 4.5 g/L ethanol, ~ 40% of the theoretical yield in CBP. • CRISPR/Cas9 was feasible for integrating genes in natural S. cerevisiae isolates.
Collapse
Affiliation(s)
- Letitia Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
5
|
Wang Y, Xia T, Li C, Zeng D, Xu L, Song L, Yu H, Chen S, Zhao J, Bao X. Promoting Nucleic Acid Synthesis in Saccharomyces cerevisiae through Enhanced Expression of Rrn7p, Rrn11p, IMPDH, and Pho84p. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15224-15236. [PMID: 37811818 DOI: 10.1021/acs.jafc.3c05035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Saccharomyces cerevisiae has emerged as a preferred source for industrial production of ribonucleic acids (RNAs) and their derivatives, which find wide applications in the food and pharmaceutical sectors. In this study, we employed a modified RNA polymerase I-mediated green fluorescent protein expression system, previously developed by our team, to screen and identify an industrial S. cerevisiae strain with an impressive 18.2% increase in the RNA content. Transcriptome analysis revealed heightened activity of genes and pathways associated with rRNA transcription, purine metabolism, and phosphate transport in the high nucleic acid content mutant strains. Our findings highlighted the crucial role of the transcription factor Sfp1p in enhancing the expression of two key components of the transcription initiation factor complex, Rrn7p and Rrn11p, thereby promoting rRNA synthesis. Moreover, elevated expression of 5'-inosine monophosphate dehydrogenases, regardless of the specific isoform (IMD2, 3, or 4), resulted in increased rRNA synthesis through heightened GTP levels. Additionally, exogenous phosphate application, coupled with overexpression of the phosphate transporter PHO84, led to a 61.4% boost in the RNA yield, reaching 2050.4 mg/L. This comprehensive study provides valuable insights into the mechanism of RNA synthesis and serves as a reference for augmenting RNA production in the food industry.
Collapse
Affiliation(s)
- Yun Wang
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Tianqing Xia
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Chenhao Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
- Shandong Sunkeen Biological Company, 6789 Xingfuhe Road, Jining 273517, China
| | - Liyun Song
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hengsong Yu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Shichao Chen
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jianzhi Zhao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
6
|
Chen N, Yang S, You D, Shen J, Ruan B, Wu M, Zhang J, Luo X, Tang H. Systematic genetic modifications of cell wall biosynthesis enhanced the secretion and surface-display of polysaccharide degrading enzymes in Saccharomyces cerevisiae. Metab Eng 2023; 77:273-282. [PMID: 37100192 DOI: 10.1016/j.ymben.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Saccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied. In this study, we systematically studied the effect of engineering cell wall biosynthesis on the activity of cellulolytic enzyme β-glucosidase (BGL1) by comparing seventy-nine gene knockout S. cerevisiae strains and newly identified that inactivation of DFG5, YPK1, FYV5, CCW12 and KRE1 obviously improved BGL1 secretion and surface-display. Combinatorial modifications of these genes, particularly double deletion of FVY5 and CCW12, along with the use of rich medium, increased the activity of secreted and surface-displayed BGL1 by 6.13-fold and 7.99-fold, respectively. Additionally, we applied this strategy to improve the activity of the cellulolytic cellobiohydrolase and amylolytic α-amylase. Through proteomic analysis coupled with reverse engineering, we found that in addition to the secretory pathway, regulation of translation processes may also involve in improving enzyme activity by engineering cell wall biosynthesis. Our work provides new insight into the construction of a yeast cell factory for efficient production of polysaccharide degrading enzymes.
Collapse
Affiliation(s)
- Nanzhu Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shuo Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology, 3501 Daxue Road, Jinan, 250353, China
| | - Dawei You
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Banlai Ruan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mei Wu
- Synceres Biosciences (Shenzhen) Co., Ltd, Nanshan Medical Device Industrial Park, Nanhai Avenue, Shenzhen, 518067, China
| | - Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Madhavan A, Arun KB, Sindhu R, Nair BG, Pandey A, Awasthi MK, Szakacs G, Binod P. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel. BIORESOURCE TECHNOLOGY 2023; 370:128555. [PMID: 36586428 DOI: 10.1016/j.biortech.2022.128555] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.
Collapse
Affiliation(s)
- Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India.
| | - K B Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 689 122, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525 Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarkhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - George Szakacs
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, 1111 Budapest, Szent Gellert ter 4, Hungary
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
8
|
Chetty BJ, Inokuma K, Hasunuma T, van Zyl WH, den Haan R. Improvement of cell-tethered cellulase activity in recombinant strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2022; 106:6347-6361. [PMID: 35951080 DOI: 10.1007/s00253-022-12114-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Consolidated bioprocessing (CBP) remains an attractive option for the production of commodity products from pretreated lignocellulose if a process-suitable organism can be engineered. The yeast Saccharomyces cerevisiae requires engineered cellulolytic activity to enable its use in CBP production of second-generation (2G) bioethanol. A promising strategy for heterologous cellulase production in yeast entails displaying enzymes on the cell surface by means of glycosylphosphatidylinositol (GPI) anchors. While strains producing a core set of cell-adhered cellulases that enabled crystalline cellulose hydrolysis have been created, secreted levels of enzyme were insufficient for complete cellulose hydrolysis. In fact, all reported recombinant yeast CBP candidates must overcome the drawback of generally low secretion titers. Rational strain engineering can be applied to enhance the secretion phenotype. This study aimed to improve the amount of cell-adhered cellulase activities of recombinant S. cerevisiae strains expressing a core set of four cellulases, through overexpression of genes that were previously shown to enhance cellulase secretion. Results showed significant increases in cellulolytic activity for all cell-adhered cellulase enzyme types. Cell-adhered cellobiohydrolase activity was improved by up to 101%, β-glucosidase activity by up to 99%, and endoglucanase activity by up to 231%. Improved hydrolysis of crystalline cellulose of up to 186% and improved ethanol yields from this substrate of 40-50% in different strain backgrounds were also observed. In addition, improvement in resistance to fermentation stressors was noted in some strains. These strains represent a step towards more efficient organisms for use in 2G biofuel production. KEY POINTS: • Cell-surface-adhered cellulase activity was improved in strains engineered for CBP. • Levels of improvement of activity were strain and enzyme dependent. • Crystalline cellulose conversion to ethanol could be improved up to 50%.
Collapse
Affiliation(s)
- Bronwyn Jean Chetty
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | | | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
9
|
Luo X, Li R, Feng JX, Qin X. Disruption of vacuolar protein sorting receptor gene Poxvps10 improves cellulolytic enzyme production by Penicillium oxalicum. Enzyme Microb Technol 2022; 160:110098. [PMID: 35863188 DOI: 10.1016/j.enzmictec.2022.110098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Penicillium oxalicum can secrete numerous of plant biomass-degrading enzymes, but limited information is available regarding the mechanisms associated with their secretion. In the Golgi-to-vacuole pathway, the type I transmembrane receptor Vps10p is involved in the sorting of the soluble vacuolar proteins and can also target recombinant and aberrant proteins from the Golgi to the vacuole for degradation. Here, we used the combination of phenotypic characterization and comparative secretome analysis to explore the effect of disruption of the vps10 gene in P. oxalicum (Poxvps10) on endogenous cellulolytic enzyme secretion. The study found that PoxVps10p is required for the targeting and delivery of vacuolar PoxCpyA to the vacuole in P. oxalicum. Poxvps10p deletion enhances extracellular protein and cellulase production by P. oxalicum when the cells are grown on a cellulosic substrate (wheat bran and Avicel). Furthermore, secretome analysis revealed higher relative amount of cellulases, lytic polysaccharide monooxygenase and post-translational modification-related proteins in the ΔPoxvps10 mutant than in the wild-type (WT) strain, which may explain the higher cellulase production by the ΔPoxvps10 than the WT strain. This study thus provides a new target for manipulating the secretory pathway to enhance the cellulolytic enzyme production.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ruijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiulin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
10
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
11
|
Zeng D, Qiu C, Shen Y, Hou J, Li Z, Zhang J, Liu S, Shang J, Qin W, Xu L, Bao X. An innovative protein expression system using RNA polymerase I for large-scale screening of high-nucleic-acid content Saccharomyces cerevisiae strains. Microb Biotechnol 2020; 13:2008-2019. [PMID: 32854170 PMCID: PMC7533336 DOI: 10.1111/1751-7915.13653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5' caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.
Collapse
Affiliation(s)
- Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Zailu Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Jixiang Zhang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Shuai Liu
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Jianli Shang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Wensheng Qin
- Department of BiologyLakehead University955 Oliver RoadThunder BayONP7B 5E1Canada
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| |
Collapse
|
12
|
Xu L, Zhang H, Cui Y, Zeng D, Bao X. Increasing the level of 4-vinylguaiacol in top-fermented wheat beer by secretory expression of ferulic acid decarboxylase from Bacillus pumilus in brewer's yeast. Biotechnol Lett 2020; 42:2711-2720. [PMID: 32761466 DOI: 10.1007/s10529-020-02980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The objective is to explore the effects of enhancing the activity of yeast ferulic acid decarboxylase (FDC1) on the level of 4-vinylguaiacol (4-VG) and the consumption of its precursor ferulic acid (FA) in top-fermented wheat beer. RESULTS Expression of Bacillus pumilus FDC1 in brewer's yeast showed a better effect on the FDC1 activity than overexpression of the endogenous enzyme. The 4-VG content was increased by 34%, and the consumption time of FA was shortened from 48 to 12 h. Since the intracellular accumulation of the FDC1 substrate did not increase over time, to reduce the FA transport burden on cells and shorten the decarboxylation time, B. pumilus FDC1 was further secreted extracellularly. The resulted strain showed a 65% increase in 4-VG content in the FA-containing medium, and produced about 3 mg L-1 4-VG in the top-fermented wheat beer, increasing by 61% than control. However, further increasing the secretory expression level of FDC1 only accelerated FA consumption. CONCLUSIONS These results suggested that appropriate secretion of bacterial FDC1 into wort could be used as a potential alternative strategy to increase the level of 4-VG in top-fermented wheat beer.
Collapse
Affiliation(s)
- Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.,Shandong Sunkeen Biological Company, 6789 Xingfuhe Road, Jining, 273517, Shandong, China.,State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, Shandong, China
| | - Haimeng Zhang
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yunqian Cui
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| | - Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| |
Collapse
|
13
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|
14
|
Song X, Li Y, Wu Y, Cai M, Liu Q, Gao K, Zhang X, Bai Y, Xu H, Qiao M. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5071949. [PMID: 30107496 DOI: 10.1093/femsyr/foy090] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023] Open
Abstract
As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, expression of heterologous cellulase increases the metabolic burden in yeast, which results in low cellulase activity and poor cellulose degradation efficiency. In this study, cellulase-expressing yeast strains that could efficiently degrade different cellulosic substrates were created by optimizing cellulase ratios through a POT1-mediated δ-integration strategy. Metabolic engineering strategies, including optimization of codon usage, promoter and signal peptide, were also included in this system. We also confirmed that heterologous cellulase expression in cellulosic yeast induced the unfolded protein response. To enhance protein folding capacity, the endoplasmic reticulum chaperone protein BiP and the disulfide isomerase Pdi1p were overexpressed, and the Golgi membrane protein Ca2+/Mn2+ ATPase Pmr1p was disrupted to decrease the glycosylation of cellulase. The resultant strain, SK18-3, could produce 5.4 g L-1 ethanol with carboxymethyl-cellulose. Strain SK12-50 achieved 4.7 g L-1 ethanol production with phosphoric acid swollen cellulose hydrolysis. When Avicel was used as the substrate, 3.8 g L-1 ethanol (75% of the theoretical maximum yield) was produced in SK13-34. This work will significantly increase our knowledge of how to engineer optimal yeast strains for biofuel production from cellulosic biomass.
Collapse
Affiliation(s)
- Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yuzhen Wu
- Department of Microbiology, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Quanli Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Kai Gao
- Tianjin Academy of Environmental Sciences, No. 17 Fukang Road, Nankai District, Tianjin 300071, China
| | - Xiuming Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yanling Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Haijin Xu
- Department of Microbiology, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
15
|
Zahrl RJ, Gasser B, Mattanovich D, Ferrer P. Detection and Elimination of Cellular Bottlenecks in Protein-Producing Yeasts. Methods Mol Biol 2019; 1923:75-95. [PMID: 30737735 DOI: 10.1007/978-1-4939-9024-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Yeasts are efficient cell factories and are commonly used for the production of recombinant proteins for biopharmaceutical and industrial purposes. For such products high levels of correctly folded proteins are needed, which sometimes requires improvement and engineering of the expression system. The article summarizes major breakthroughs that led to the efficient use of yeasts as production platforms and reviews bottlenecks occurring during protein production. Special focus is given to the metabolic impact of protein production. Furthermore, strategies that were shown to enhance secretion of recombinant proteins in different yeast species are presented.
Collapse
Affiliation(s)
- Richard J Zahrl
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Brigitte Gasser
- Christian Doppler-Laboratory for Growth-Decoupled Protein Production in Yeast, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) and Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) and Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Pau Ferrer
- Luxembourg Institute of Science and Technology, Belvaux, Luxembourg. .,Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.
| |
Collapse
|
16
|
Wang L, Zhao S, Chen XX, Deng QP, Li CX, Feng JX. Secretory overproduction of a raw starch-degrading glucoamylase in Penicillium oxalicum using strong promoter and signal peptide. Appl Microbiol Biotechnol 2018; 102:9291-9301. [PMID: 30155751 DOI: 10.1007/s00253-018-9307-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Abstract
Raw starch-degrading enzymes (RSDEs) are capable of directly degrading raw starch granules below the gelatinization temperature of starch, which may significantly reduce the cost of starch-based biorefining. However, low yields of natural RSDEs from filamentous fungi limit their industrial application. In this study, transcriptomic and secretomic profiling was employed to screen strongest promoters and signal peptides for use in overexpression of a RSDE gene in Penicillium oxalicum. Top five strong promoters and three signal peptides were detected. Using a green fluorescent protein (GFP) as the reporter, the inducible promoter pPoxEgCel5B of an endoglucanase gene PoxEgCel5B and the signal peptide spPoxGA15A of a raw starch-degrading glucoamylase PoxGA15A were respectively identified as driving the highest GFP production in P. oxalicum. PoxGA15A-overexpressed P. oxalicum strain OXPoxGA15A, which was constructed based on both pPoxEgCel5B and spPoxGA15A, produced significantly higher amounts of recombinant PoxGA15A than the parental strain ∆PoxKu70. Furthermore, crude enzyme from the OXPoxGA15A strain exhibited high activities towards raw starch from cassava, potato, and uncooked soluble starch. Specifically, raw cassava starch-degrading enzyme activity reached 241.6 U/mL in the OXPoxGA15A, which was 3.4-fold higher than that of the ∆PoxKu70. This work provides a feasible method for hyperproduction of RSDEs in P. oxalicum.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| | - Xing-Xiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Qiao-Ping Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
17
|
Chen L, Du JL, Zhan YJ, Li JA, Zuo RR, Tian S. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 2018; 48:653-661. [PMID: 29995567 DOI: 10.1080/10826068.2018.1487846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Consolidated bioprocessing (CBP) strategy was developed to construct a cell-surface displayed consortium for heterologously expressing functional lignocellulytic enzymes. The reaction system composed of two engineered yeast strains: Y5/XynII-XylA (co-displaying two types of xylanases) and Y5/EG-CBH-BGL (co-displaying three types of cellulases). The immobilization of recombinant fusion proteins and their cell-surface accessibility of were analyzed by flow cytometry and immunofluorescence. The feasibility of consolidated bioprocessing by using pretreated corn stover (CS) as substrate for direct bioconversion was further investigated, and the synergistic activity and proximity effect between cellulases and xylanases on lignocelluloses degradation were also discussed in this work. Without any commercial enzyme addition, the combined yeast consortium produced 1.61 g/L ethanol which achieved 64.7% of the theoretical ethanol yield during 144 h from steam-exploded CS. The results indicated that the assembly of cellulases and xylanases using a synthetic consortium capable of combined displaying lignocellulytic enzymes is a promising approach for simultaneous saccharification and fermentation to ethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Le Chen
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ji-Liang Du
- a College of Life Science , Capital Normal University , Beijing , China
| | - Yong-Jia Zhan
- a College of Life Science , Capital Normal University , Beijing , China
| | - Jian-An Li
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ran-Ran Zuo
- a College of Life Science , Capital Normal University , Beijing , China
| | - Shen Tian
- a College of Life Science , Capital Normal University , Beijing , China
| |
Collapse
|
18
|
Song X, Liu Q, Mao J, Wu Y, Li Y, Gao K, Zhang X, Bai Y, Xu H, Qiao M. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:4083647. [DOI: 10.1093/femsyr/fox064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Quanli Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Jiwei Mao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Yuzhen Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Kai Gao
- Tianjin Academy of Environmental Sciences, No. 17 Fukang Road, Nankai District, Tianjin, China
| | - Xiuming Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Yanling Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, China
| |
Collapse
|
19
|
Lee CR, Sung BH, Lim KM, Kim MJ, Sohn MJ, Bae JH, Sohn JH. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol. Sci Rep 2017; 7:4428. [PMID: 28667330 PMCID: PMC5493647 DOI: 10.1038/s41598-017-04815-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6–2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.
Collapse
Affiliation(s)
- Cho-Ryong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kwang-Mook Lim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Mi-Jin Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Min Jeong Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Bae
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X. Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:53. [PMID: 28261326 PMCID: PMC5327580 DOI: 10.1186/s13068-017-0738-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/17/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera β-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.
Collapse
Affiliation(s)
- Hongting Tang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Meihui Song
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yao He
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jiajing Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Shenghuan Wang
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Yu Shen
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Jin Hou
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| | - Xiaoming Bao
- The School of Life Science, State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353 China
| |
Collapse
|
21
|
de Ruijter JC, Jurgens G, Frey AD. Screening for novel genes of Saccharomyces cerevisiae involved in recombinant antibody production. FEMS Yeast Res 2016; 17:fow104. [PMID: 27956492 DOI: 10.1093/femsyr/fow104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/05/2016] [Indexed: 01/17/2023] Open
Abstract
Cost-effective manufacturing of biopharmaceuticals in non-mammalian hosts still requires tremendous efforts in strain development. In order to expedite identification of novel leads for strain engineering, we used a transposon-mutagenized yeast genomic DNA library to create a collection of Saccharomyces cerevisiae deletion strains expressing a full-length IgG antibody. Using a high-throughput screening, transformants with either significantly higher or lower IgG expression were selected. The integration site of the transposon in three of the selected strains was located by DNA sequencing. The inserted DNA lay within the VPS30 and TAR1 open reading frame, and upstream of the HEM13 open reading frame. The complete coding sequence of these genes was deleted in the wild-type strain background to confirm the IgG expression phenotypes. Production of recombinant antibody was increased 2-fold in the Δvps30 strain, but only mildly affected secretion levels in the Δtar1 strain. Remarkably, expression of endogenous yeast acid phosphatase was increased 1.7- and 2.4-fold in Δvps30 and Δtar1 strains. The study confirmed the power of genome-wide high-throughput screens for strain development and highlights the importance of using the target molecule during the screening process.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| | | | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
22
|
de Ruijter JC, Koskela EV, Frey AD. Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb Cell Fact 2016; 15:87. [PMID: 27216259 PMCID: PMC4878073 DOI: 10.1186/s12934-016-0488-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/11/2016] [Indexed: 01/20/2023] Open
Abstract
Background The yeast Saccharomyces cerevisiae provides intriguing possibilities for synthetic biology and bioprocess applications, but its use is still constrained by cellular characteristics that limit the product yields. Considering the production of advanced biopharmaceuticals, a major hindrance lies in the yeast endoplasmic reticulum (ER), as it is not equipped for efficient and large scale folding of complex proteins, such as human antibodies. Results Following the example of professional secretory cells, we show that inducing an ER expansion in yeast by deleting the lipid-regulator gene OPI1 can improve the secretion capacity of full-length antibodies up to fourfold. Based on wild-type and ER-enlarged yeast strains, we conducted a screening of a folding factor overexpression library to identify proteins and their expression levels that enhance the secretion of antibodies. Out of six genes tested, addition of the peptidyl-prolyl isomerase CPR5 provided the most beneficial effect on specific product yield while PDI1, ERO1, KAR2, LHS1 and SIL1 had a mild or even negative effect to antibody secretion efficiency. Combining genes for ER enhancement did not induce any significant additional effect compared to addition of just one element. By combining the Δopi1 strain, with the enlarged ER, with CPR5 overexpression, we were able to boost the specific antibody product yield by a factor of 10 relative to the non-engineered strain. Conclusions Engineering protein folding in vivo is a major task for biopharmaceuticals production in yeast and needs to be optimized at several levels. By rational strain design and high-throughput screening applications we were able to increase the specific secreted antibody yields of S. cerevisiae up to 10-fold, providing a promising strain for further process optimization and platform development for antibody production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0488-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorg C de Ruijter
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Essi V Koskela
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Alexander D Frey
- Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
23
|
Ali SS, Nugent B, Mullins E, Doohan FM. Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 2016; 6:13. [PMID: 26888202 PMCID: PMC4757592 DOI: 10.1186/s13568-016-0185-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. The most important challenge is to overcome substrate recalcitrance and to thus reduce the number of steps needed to biorefine lignocellulose. Conventionally, conversion involves chemical pretreatment of lignocellulose, followed by hydrolysis of biomass to monomer sugars that are subsequently fermented into bioethanol. Consolidated bioprocessing (CBP) has been suggested as an efficient and economical method of manufacturing bioethanol from lignocellulose. CBP integrates the hydrolysis and fermentation steps into a single process, thereby significantly reducing the amount of steps in the biorefining process. Filamentous fungi are remarkable organisms that are naturally specialised in deconstructing plant biomass and thus they have tremendous potential as components of CBP. The fungus Fusarium oxysporum has potential for CBP of lignocellulose to bioethanol. Here we discuss the complexity and potential of CBP, the bottlenecks in the process, and the potential influence of fungal genetic diversity, substrate complexity and new technologies on the efficacy of CPB of lignocellulose, with a focus on F. oxysporum.
Collapse
|
24
|
Hasunuma T, Ishii J, Kondo A. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 2015; 29:1-9. [DOI: 10.1016/j.cbpa.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/31/2022]
|
25
|
Challenges for the production of bioethanol from biomass using recombinant yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:89-125. [PMID: 26003934 DOI: 10.1016/bs.aambs.2015.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose biomass, one of the most abundant renewable resources on the planet, is an alternative sustainable energy source for the production of second-generation biofuels. Energy in the form of simple or complex carbohydrates can be extracted from lignocellulose biomass and fermented by microorganisms to produce bioethanol. Despite 40 years of active and cutting-edge research invested into the development of technologies to produce bioethanol from lignocellulosic biomass, the process remains commercially unviable. This review describes the achievements that have been made in generating microorganisms capable of utilizing both simple and complex sugars from lignocellulose biomass and the fermentation of these sugars into ethanol. We also provide a discussion on the current "roadblocks" standing in the way of making second-generation bioethanol a commercially viable alternative to fossil fuels.
Collapse
|
26
|
Linger JG, Taylor LE, Baker JO, Vander Wall T, Hobdey SE, Podkaminer K, Himmel ME, Decker SR. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:45. [PMID: 25904982 PMCID: PMC4405872 DOI: 10.1186/s13068-015-0230-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND One of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like properties from heterologous expression systems has proven difficult. In this study, we develop a protein expression system in H. jecorina (Trichoderma reesei) useful for production and secretion of heterologous cellobiohydrolases from glycosyl hydrolase family 7. Building upon previous work in heterologous protein expression in filamentous fungi, we have integrated a native constitutive enolase promoter with the native cbh1 signal sequence. RESULTS The constitutive eno promoter driving the expression of Cel7A allows growth on glucose and results in repression of the native cellulase system, severely reducing background endo- and other cellulase activity and greatly simplifying purification of the recombinant protein. Coupling this system to a Δcbh1 strain of H. jecorina ensures that only the recombinant Cel7A protein is produced. Two distinct transformant colony morphologies were observed and correlated with high and null protein production. Production levels in 'fast' transformants are roughly equivalent to those in the native QM6a strain of H. jecorina, typically in the range of 10 to 30 mg/L when grown in continuous stirred-tank fermenters. 'Slow' transformants showed no evidence of Cel7A production. Specific activity of the purified recombinant Cel7A protein is equivalent to that of native protein when assayed on pretreated corn stover, as is the thermal stability and glycosylation level. Purified Cel7A produced from growth on glucose demonstrated remarkably consistent specific activity. Purified Cel7A from the same strain grown on lactose demonstrated significantly higher variability in activity. CONCLUSIONS The elimination of background cellulase induction provides much more consistent measured specific activity compared to a traditional cbh1 promoter system induced with lactose. This expression system provides a powerful tool for the expression and comparison of mutant and/or phylogenetically diverse cellobiohydrolases in the industrially relevant cellulase production host H. jecorina.
Collapse
Affiliation(s)
- Jeffrey G Linger
- />National Bioenergy Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Larry E Taylor
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - John O Baker
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Todd Vander Wall
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Sarah E Hobdey
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Kara Podkaminer
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Michael E Himmel
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| | - Stephen R Decker
- />Biosciences Center, National Renewable Energy Laboratory, 16253 Denver West Parkway, Golden, CO 80401 USA
| |
Collapse
|
27
|
Greene ER, Himmel ME, Beckham GT, Tan Z. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Adv Carbohydr Chem Biochem 2015; 72:63-112. [PMID: 26613815 DOI: 10.1016/bs.accb.2015.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.
Collapse
|
28
|
Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv 2014; 33:142-154. [PMID: 25479282 DOI: 10.1016/j.biotechadv.2014.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Hypocrea jecorina, the sexual teleomorph of Trichoderma reesei, has long been favored as an industrial cellulase producer, first utilizing its native cellulase system and later augmented by the introduction of heterologous enzymatic activities or improved variants of native enzymes. Expression of heterologous proteins in H. jecorina was once considered difficult when the target was an improved variant of a native cellulase. Developments over the past nearly 30 years have produced strains, vectors, and selection mechanisms that have continued to simplify and streamline heterologous protein expression in this fungus. More recent developments in fungal molecular biology have pointed the way toward a fundamental transformation in the ease and efficiency of heterologous protein expression in this important industrial host. Here, 1) we provide a historical perspective on advances in H. jecorina molecular biology, 2) outline host strain engineering, transformation, selection, and expression strategies, 3) detail potential pitfalls when working with this organism, and 4) provide consolidated examples of successful cellulase expression outcomes from our laboratory.
Collapse
|
29
|
Hong J, Yang H, Zhang K, Liu C, Zou S, Zhang M. Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol 2014; 30:2985-93. [PMID: 25164958 DOI: 10.1007/s11274-014-1726-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/20/2014] [Indexed: 11/27/2022]
Abstract
Consolidated bioprocessing (CBP) is a promising technology for lignocellulosic ethanol production, and the key is the engineering of a microorganism that can efficiently utilize cellulose. Development of Saccharomyces cerevisiae for CBP requires high level expression of cellulases, particularly cellobiohydrolases (CBH). In this study, to construct a CBP-enabling yeast with enhanced CBH activity, three cassettes containing constitutively expressed CBH-encoding genes (cbh1 from Aspergillus aculeatus, cbh1 and cbh2 from Trichoderma reesei) were constructed. T. reesei eg2, A. aculeatus bgl1, and the three CBH-encoding genes were then sequentially integrated into the S. cerevisiae W303-1A chromosome via δ-sequence-mediated integration. The resultant strains W1, W2, and W3, expressing uni-, bi-, and trifunctional cellulases, respectively, exhibited corresponding cellulase activities. Furthermore, both the activities and glucose producing activity ascended. The growth test on cellulose containing plates indicated that CBH was a necessary component for successful utilization of crystalline cellulose. The three recombinant strains and the control strains W303-1A and AADY were evaluated in acid- and alkali-pretreated corncob containing media with 5 FPU exogenous cellulase/g biomass loading. The highest ethanol titer (g/l) within 7 days was 5.92 ± 0.51, 18.60 ± 0.81, 28.20 ± 0.84, 1.40 ± 0.12, and 2.12 ± 0.35, respectively. Compared with the control strains, W3 efficiently fermented pretreated corncob to ethanol. To our knowledge, this is the first study aimed at creating cellulolytic yeast with enhanced CBH activity by integrating three types of CBH-encoding gene with a strong constitutive promoter Ptpi.
Collapse
Affiliation(s)
- Jiefang Hong
- Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | |
Collapse
|
30
|
Signal peptide of cellulase. Appl Microbiol Biotechnol 2014; 98:5329-62. [DOI: 10.1007/s00253-014-5742-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 12/24/2022]
|