1
|
Liu M, Feng Y, Li H, Yao Y, Cui Y, Wang J. Exploration of the advantages of targeted isolation of deep-sea microorganisms and genetically engineered strains. World J Microbiol Biotechnol 2024; 40:372. [PMID: 39487272 DOI: 10.1007/s11274-024-04177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Oil, mineral processing and environmental restoration can be dangerous processes. Attempts are often made to apply microorganisms to reduce the risks, but the adaptability of terrestrial organisms is often weak. Although genetically engineered strains can improve their environmental adaptability through targeted modification, there are problems such as metabolite accumulation, poor plasmid stability and potential pathogenicity. Screening of extremophiles from the natural environment has become an inevitable choice. The special environment in the deep sea (high pressure, low temperature, low nutrition, high salinity) is a natural place for extremophiles to grow and survive, thus screening of extremophiles from the deep sea is conducive to the green and sustainable development of industry. In this paper, the application status and problems of genetically engineered strains are reviewed based on the microorganisms needed for extreme industry. This paper focuses on the application status and advantages of deep-sea microorganisms. It is found that their advantages are strong adaptability, stable gene, friendly environment, simple and convenient technology (compared with genetic engineering), which has a broad industry processes application prospect. This review broadens the scope of microbial applications.
Collapse
Affiliation(s)
- MengYao Liu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yisong Yao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yufeng Cui
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianwei Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Morohoshi T, Hirose K, Someya N. Identification and characterization of novel N-acylhomoserine lactonase from nonpathogenic Allorhizobium vitis, a candidate for biocontrol agent. J Biosci Bioeng 2024; 137:437-444. [PMID: 38575466 DOI: 10.1016/j.jbiosc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Some strains of nonpathogenic Allorhizobium vitis can control crown gall disease in grapevines caused by pathogenic A. vitis and are considered candidates for biocontrol agents. Many plant pathogenic bacteria regulate the expression of their virulence genes via quorum sensing using N-acylhomoserine lactone (AHL) as a signaling compound. The eight nonpathogenic A. vitis strains used in this study showed AHL-degrading activity. The complete genome sequence of A. vitis MAFF 212306 contained three AHL lactonase gene homologs. When these genes were cloned and transformed into Escherichia coli DH5α, E. coli harboring the aiiV gene (RvVAR031_27660) showed AHL-degrading activity. The aiiV coding region was successfully amplified by polymerase chain reaction from the genomes of all eight strains of nonpathogenic A. vitis. Purified His-tagged AiiV exhibited AHL lactonase activity by hydrolyzing the lactone ring of AHL. AiiV had an optimal temperature of approximately 30 °C; however, its thermostability decreased above 40 °C. When the AiiV-expressing plasmid was transformed into Pectobacterium carotovorum subsp. carotovorum NBRC 3830, AHL production by NBRC 3830 decreased below the detection limit, and its maceration activity, which was controlled by quorum sensing, almost disappeared. These results suggest the potential use of AHL-degrading nonpathogenic A. vitis for the inhibition of crown gall disease in grapevines and other plant diseases controlled by quorum sensing.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Koki Hirose
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| |
Collapse
|
3
|
Hao L, Liang J, Chen S, Zhang J, Zhang Y, Xu Y. MzmL, a novel marine derived N-acyl homoserine lactonase from Mesoflavibacter zeaxanthinifaciens that attenuates Pectobacterium carotovorum subsp. carotovorum virulence. Front Microbiol 2024; 15:1353711. [PMID: 38784800 PMCID: PMC11112094 DOI: 10.3389/fmicb.2024.1353711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Quorum sensing (QS) is a conserved cell-cell communication mechanism widely distributed in bacteria, and is oftentimes tightly correlated with pathogen virulence. Quorum quenching enzymes, which interfere with QS through degrading the QS signaling molecules, could attenuate virulence instead of killing the pathogens, and thus are less likely to induce drug resistance. Many Gram-negative bacteria produce N-acyl homoserine lactones (AHLs) for interspecies communication. In this study, we isolated and identified a bacterial strain, Mesoflavibacter zeaxanthinifaciens XY-85, from an Onchidium sp. collected from the intertidal zone of Dapeng Reserve in Shenzhen, China, and found it had strong AHL degradative activity. Whole genome sequencing and blast analysis revealed that XY-85 harbors an AHL lactonase (designated MzmL), which is predicted to have an N-terminal signal peptide and share the "HXHXDH" motif with known AHL lactonases belonging to the Metallo-β-lactamase superfamily. Phylogenetic studies showed MzmL was closest to marine lactonase cluster members, MomL and Aii20J, instead of the AiiA type lactonases. Ultra performance liquid chromatography-mass spectrometry analysis confirmed that MzmL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MzmL could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, and retained full bioactivity under a wide range of temperatures (28-100°C) and pHs (4-11). Furthermore, MzmL significantly reduced Pectobacterium carotovorum subsp. carotovorum virulence factor production in vitro, such as biofilm formation and plant cell wall degrading enzyme production, and inhibited soft rot development on potato slices. These results demonstrated that MzmL may be a novel type of AHL lactonase with good environmental stability, and has great potential to be developed into a novel biological control agent for bacterial disease management.
Collapse
Affiliation(s)
- Lingyun Hao
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinyou Liang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuotian Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Junliang Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Rehman ZU, Momin AA, Aldehaiman A, Irum T, Grünberg R, Arold ST. The exceptionally efficient quorum quenching enzyme LrsL suppresses Pseudomonas aeruginosa biofilm production. Front Microbiol 2022; 13:977673. [PMID: 36071959 PMCID: PMC9441902 DOI: 10.3389/fmicb.2022.977673] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum quenching (QQ) is the enzymatic degradation of molecules used by bacteria for synchronizing their behavior within communities. QQ has attracted wide attention due to its potential to inhibit biofilm formation and suppress the production of virulence factors. Through its capacity to limit biofouling and infections, QQ has applications in water treatment, aquaculture, and healthcare. Several different QQ enzymes have been described; however, they often lack the high stability and catalytic efficiency required for industrial applications. Previously, we identified genes from genome sequences of Red Sea sediment bacteria encoding potential QQ enzymes. In this study, we report that one of them, named LrsL, is a metallo-β-lactamase superfamily QQ enzyme with outstanding catalytic features. X-ray crystallography shows that LrsL is a zinc-binding dimer. LrsL has an unusually hydrophobic substrate binding pocket that can accommodate a broad range of acyl-homoserine lactones (AHLs) with exceptionally high affinity. In vitro, LrsL achieves the highest catalytic efficiency reported thus far for any QQ enzyme with a Kcat/KM of 3 × 107. LrsL effectively inhibited Pseudomonas aeruginosa biofilm formation without affecting bacterial growth. Furthermore, LrsL suppressed the production of exopolysaccharides required for biofilm production. These features, and its capacity to regain its function after prolonged heat denaturation, identify LrsL as a robust and unusually efficient QQ enzyme for clinical and industrial applications.
Collapse
Affiliation(s)
- Zahid Ur Rehman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Environmental Science Program, Water Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- *Correspondence: Zahid Ur Rehman, ; Stefan T. Arold,
| | - Afaque A. Momin
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdullah Aldehaiman
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tayyaba Irum
- Services Hospital, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Raik Grünberg
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, Montpellier, France
- *Correspondence: Zahid Ur Rehman, ; Stefan T. Arold,
| |
Collapse
|
5
|
Chen Y, Liu P, Wu J, Yan W, Xie S, Sun X, Ye BC, Chu X. N-acylhomoserine lactonase-based hybrid nanoflowers: a novel and practical strategy to control plant bacterial diseases. J Nanobiotechnology 2022; 20:347. [PMID: 35883097 PMCID: PMC9327166 DOI: 10.1186/s12951-022-01557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.
Collapse
Affiliation(s)
- Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Wanqing Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Saixue Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
6
|
Identification and Characterization of Quorum-Quenching Activity of N-Acylhomoserine Lactonase from Coagulase-Negative Staphylococci. Antibiotics (Basel) 2020; 9:antibiotics9080483. [PMID: 32764492 PMCID: PMC7459623 DOI: 10.3390/antibiotics9080483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signals in Gram-negative bacteria. Many genes encoding AHL-degrading enzymes have been cloned and characterized in various microorganisms. Coagulase-negative staphylococci (CNS) are present on the skin of animals and are considered low-virulent species. The AHL-lactonase gene homologue, ahlS, was present in the genomes of the CNS strains Staphylococcus carnosus, Staphylococcus haemolyticus, Staphylococcus saprophyticus, and Staphylococcus sciuri. We cloned the candidate ahlS homologue from six CNS strains into the pBBR1MCS5 vector. AhlS from the CNS strains showed a higher degrading activity against AHLs with short acyl chains compared to those with long acyl chains. AhlS from S. sciuri was expressed and purified as a maltose-binding protein (MBP) fusion. Pseudomonas aeruginosa is an opportunistic pathogen that regulates several virulence factors such as elastase and pyocyanin by quorum-sensing systems. When MBP-AhlS was added to the culture of P. aeruginosa PAO1, pyocyanin production and elastase activity were substantially reduced compared to those in untreated PAO1. These results demonstrate that the AHL-degrading activity of AhlS from the CNS strains can inhibit quorum sensing in P. aeruginosa PAO1.
Collapse
|
7
|
Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds. Arch Microbiol 2020; 202:1477-1488. [DOI: 10.1007/s00203-020-01851-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 03/01/2020] [Indexed: 12/28/2022]
|
8
|
Başaran TI, Berber D, Gökalsın B, Tramice A, Tommonaro G, Abbamondi GR, Erginer Hasköylü M, Toksoy Öner E, Iodice C, Sesal NC. Extremophilic Natrinema versiforme Against Pseudomonas aeruginosa Quorum Sensing and Biofilm. Front Microbiol 2020; 11:79. [PMID: 32117114 PMCID: PMC7015896 DOI: 10.3389/fmicb.2020.00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes high morbidity and mortality rates due to its biofilm form. Biofilm formation is regulated via quorum sensing (QS) mechanism and provides up to 1000 times more resistance against conventional antibiotics. QS related genes are expressed according to bacterial population density via signal molecules. QS inhibitors (QSIs) from natural sources are widely studied evaluating various extracts from extreme environments. It is suggested that extremely halophilic Archaea may also produce QSI compounds. For this purpose, we tested QS inhibitory potentials of ethyl acetate extracts from cell free supernatants and cells of Natrinema versiforme against QS and biofilm formation of P. aeruginosa. To observe QS inhibition, all extracts were tested on P. aeruginosa lasB-gfp, rhlA-gfp, and pqsA-gfp biosensor strains and biofilm inhibition was studied using P. aeruginosa PAO1. According to our results, QS inhibition ratios of cell free supernatant extract (CFSE) were higher than cell extract (CE) on las system, whereas CE was more effective on rhl system. In addition, anti-biofilm effect of CFSE was higher than CE. Structural analysis revealed that the most abundant compound in the extracts was trans 4-(2-carboxy-vinyl) benzoic acid.
Collapse
Affiliation(s)
- Tunahan Irmak Başaran
- Department of Biology, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Didem Berber
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Barış Gökalsın
- Department of Biology, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | | | | | | | - Merve Erginer Hasköylü
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Ebru Toksoy Öner
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Carmine Iodice
- Institute of Biomolecular Chemistry-CNR, Pozzuoli, Italy
| | - Nüzhet Cenk Sesal
- Department of Biology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
AidB, a Novel Thermostable N-Acylhomoserine Lactonase from the Bacterium Bosea sp. Appl Environ Microbiol 2019; 85:AEM.02065-19. [PMID: 31604771 DOI: 10.1128/aem.02065-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Many Gram-negative bacteria employ N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules to regulate virulence expression in a density-dependent manner. Quorum quenching (QQ) via enzymatic inactivation of AHLs is a promising strategy to reduce bacterial infections and drug resistance. Herein, a thermostable AHL lactonase (AidB), which could degrade different AHLs, with or without a substitution of carbonyl or hydroxyl at the C-3 position, was identified from the soil bacterium Bosea sp. strain F3-2. Ultrahigh-performance liquid chromatography analysis demonstrated that AidB is an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone (HSL) ring. AidB was thermostable in the range 30 to 80°C and showed maximum activity after preincubation at 60°C for 30 min. The optimum temperature of AidB was 60°C, and the enzyme could be stably stored in double-distilled water (ddH2O) at 4°C or room temperature. AidB homologs were found only in Rhizobiales and Rhodospirillales of the Alphaproteobacteria AidB from Agrobacterium tumefaciens and AidB from Rhizobium multihospitium (with amino acid identities of 50.6% and 52.8% to AidB, respectively) also showed thermostable AHL degradation activity. When introduced into bacteria, plasmid-expressed AidB attenuated pyocyanin production by Pseudomonas aeruginosa PAO1 and the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Z3-3, suggesting that AidB is a potential therapeutic agent by degrading AHLs.IMPORTANCE A quorum-sensing system using AHLs as the signal in many bacterial pathogens is a critical virulence regulator and an attractive target for anti-infective drugs. In this work, we identified a novel AHL lactonase, AidB, from a soil bacterial strain, Bosea sp. F3-2. The expression of aidB reduced the production of AHL signals and QS-dependent virulence factors in Pseudomonas aeruginosa and Pectobacterium carotovorum The homologs of AidB with AHL-degrading activities were found only in several genera belonging to the Alphaproteobacteria Remarkably, AidB is a thermostable enzyme that retained its catalytic activity after treatment at 80°C for 30 min and exhibits reliable storage stability at both 4°C and room temperature. These properties might make it more suitable for practical application.
Collapse
|
10
|
Wang TN, Guan QT, Pain A, Kaksonen AH, Hong PY. Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions. Front Microbiol 2019; 10:823. [PMID: 31057524 PMCID: PMC6479171 DOI: 10.3389/fmicb.2019.00823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum quenching (QQ) is proposed as a new strategy for mitigating microbe-associated problems (e.g., fouling, biocorrosion). However, most QQ agents reported to date have not been evaluated for their quenching efficacies under conditions representative of seawater desalination plants, cooling towers or marine aquaculture. In this study, bacterial strains were isolated from Saudi Arabian coastal environments and screened for acyl homoserine lactone (AHL)-quenching activities. Five AHL quenching bacterial isolates from the genera Pseudoalteromonas, Pontibacillus, and Altererythrobacter exhibited high AHL-quenching activity at a salinity level of 58 g/L and a pH of 7.8 at 50°C. This result demonstrates the potential use of these QQ bacteria in mitigating microbe-associated problems under saline and alkaline conditions at high (>37°C) temperatures. Further characterizations of the QQ efficacies revealed two bacterial isolates, namely, Pseudoalteromonas sp. L11 and Altererythrobacter sp. S1-5, which could possess enzymatic QQ activity. The genome sequences of L11 and S1-5 with a homologous screening against reported AHL quenching genes suggest the existence of four possible QQ coding genes in each strain. Specifically, two novel AHL enzymes, AiiAS1-5 and EstS1-5 from Altererythrobacter sp. S1-5, both contain signal peptides and exhibit QQ activity over a broad range of pH, salinity, and temperature values. In particular, AiiAS1-5 demonstrated activity against a wide spectrum of AHL molecules. When tested against three bacterial species, namely, Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus, AiiAS1-5 was able to inhibit the motility of all three species under saline conditions. The biofilm formation associated with P. aeruginosa was also significantly inhibited by AiiAS1-5. AiiAS1-5 also reduced the quorum sensing-mediated virulence traits of A. hydrophila, P. aeruginosa, and V. alginolyticus during the mid and late exponential phases of cell growth. The enzyme did not impose any detrimental effects on cell growth, suggesting a lower potential for the target bacterium to develop resistance over long-term exposure. Overall, this study suggested that some QQ enzymes obtained from the bacteria that inhabit saline environments under high temperatures have potential applications in the mitigation of microbe-associated problems.
Collapse
Affiliation(s)
- Tian-Nyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Qing-Tian Guan
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Distribution and characterization of N-acylhomoserine lactone (AHL)-degrading activity and AHL lactonase gene (qsdS) in Sphingopyxis. J Biosci Bioeng 2019; 127:411-417. [DOI: 10.1016/j.jbiosc.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
|
12
|
Aslanli A, Lyagin I, Efremenko E. Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase. Biol Chem 2019; 399:869-879. [PMID: 29870390 DOI: 10.1515/hsz-2018-0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 11/15/2022]
Abstract
N-acyl homoserine lactones (AHLs) are quorum sensing (QS) signal molecules used by most Gram-negative pathogenic bacteria. In this article the lactonase activity of the preparations based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) towards AHLs was studied. Initially, three of the most interesting β-lactam antibiotics were selected from seven that were trialed during molecular docking to His6-OPH. Combinations of antibiotics (meropenem, imipenem, ceftriaxone) and His6-OPH taken in the native form or in the form of non-covalent enzyme-polyelectrolyte complexes (EPCs) with poly(glutamic acid) or poly(aspartic acid) were obtained and investigated. The lactonase activity of the preparations was investigated under different physical-chemical conditions in the hydrolysis of AHLs [N-butyryl-D,L-homoserine lactone, N-(3-oxooctanoyl)-D,L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone]. An increased efficiency of catalytic action and stability of the lactonase activity of His6-OPH was shown for its complexes with antibiotics and was confirmed in trials with bacterial strains. The broadening of the catalytic action of the enzyme against AHLs was revealed in the presence of the meropenem. Results of molecular docking of AHLs to the surface of the His6-OPH dimer in the presence of antibiotics allowed proposing the mechanism of such interference based on a steric repulsion of the carbon chain of hydrolyzed AHLs by the antibiotics bounded to the enzyme surface.
Collapse
Affiliation(s)
- Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
13
|
See-Too WS, Convey P, Pearce DA, Chan KG. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microb Cell Fact 2018; 17:179. [PMID: 30445965 PMCID: PMC6240239 DOI: 10.1186/s12934-018-1024-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme. RESULTS Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage. CONCLUSION We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.
Collapse
Affiliation(s)
- Wah Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Peter Convey
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David A Pearce
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Applied Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
14
|
Fan X, Liang M, Wang L, Chen R, Li H, Liu X. Aii810, a Novel Cold-Adapted N-Acylhomoserine Lactonase Discovered in a Metagenome, Can Strongly Attenuate Pseudomonas aeruginosa Virulence Factors and Biofilm Formation. Front Microbiol 2017; 8:1950. [PMID: 29067011 PMCID: PMC5641347 DOI: 10.3389/fmicb.2017.01950] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022] Open
Abstract
The pathogen Pseudomonas aeruginosa uses quorum sensing (QS) to control virulence and biofilm formation. Enzymatic disruption of quorum sensing is a promising anti-infection therapeutic strategy that does not rely on antibiotics. Here, a novel gene (aii810) encoding an N-acylhomoserine lactonase was isolated from the Mao-tofu metagenome for the first time. Aii810 encoded a protein of 269 amino acids and was expressed in Escherichia coli BL21 (DE3) in soluble form. It showed the highest activity at 20°C, and it maintained 76.5% of activity at 0°C and more than 50% activity at 0–40°C. The optimal pH was 8.0. It was stable in both neutral and slightly alkaline conditions and at temperatures below 40°C. The enzyme hydrolyzed several ρ-nitrophenyl esters, but its best substrate was ρ-nitrophenyl acetate. Its kcat and Km values were 347.7 S-1 and 205.1 μM, respectively. It efficiently degraded N-butyryl-L-homoserine lactone and N-(3-oxododecanoyl)-L-homoserine lactone, exceeding hydrolysis rates of 72.3 and 100%, respectively. Moreover, Aii810 strongly attenuated P. aeruginosa virulence and biofilm formation. This enzyme with high anti-QS activity was the most cold-adapted N-acylhomoserine lactonase reported, which makes it an attractive enzyme for use as a therapeutic agent against P. aeruginosa infection.
Collapse
Affiliation(s)
- Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingjun Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ruo Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - He Li
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
16
|
Bergonzi C, Schwab M, Elias M. The quorum-quenching lactonase from Geobacillus caldoxylosilyticus: purification, characterization, crystallization and crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:681-6. [PMID: 27599858 DOI: 10.1107/s2053230x16011821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022]
Abstract
Lactonases are enzymes that are capable of hydrolyzing various lactones such as aliphatic lactones or acyl-homoserine lactones (AHLs), with the latter being used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases therefore have the ability to quench the chemical communication, also known as quorum sensing, of numerous bacteria, and in particular to inhibit behaviors that are regulated by this system, such as the expression of virulence factors or the production of biofilms. A novel representative from the metallo-β-lactamase superfamily, dubbed GcL, was isolated from the thermophilic bacterium Geobacillus caldoxylosilyticus. Because of its thermophilic origin, GcL may constitute an interesting candidate for the development of biocontrol agents. Here, we show that GcL is a thermostable enzyme with a half-life at 75°C of 152.5 ± 10 min. Remarkably, it is also shown that GcL is among the most active lactonases characterized to date, with catalytic efficiencies (kcat/Km) against AHLs of greater than 10(6) M(-1) s(-1). The structure of GcL is expected to shed light on the catalytic mechanism of the enzyme and the molecular determinants for the substrate specificity in this class of lactonases. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.6 Å resolution of GcL are reported.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
17
|
Mayer C, Romero M, Muras A, Otero A. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli. Appl Microbiol Biotechnol 2015; 99:9523-39. [PMID: 26092757 DOI: 10.1007/s00253-015-6741-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/24/2015] [Accepted: 05/29/2015] [Indexed: 11/25/2022]
Abstract
Acyl homoserine lactones (AHLs) are produced by many Gram-negative bacteria to coordinate gene expression in cellular density dependent mechanisms known as quorum sensing (QS). Since the disruption of the communication systems significantly reduces virulence, the inhibition of quorumsensing processes or quorum quenching (QQ) represents an interesting anti-pathogenic strategy to control bacterial infections. Escherichia coli does not produce AHLs but possesses an orphan AHL receptor, SdiA, which is thought to be able to sense the QS signals produced by other bacteria and controls important traits as the expression of glutamate-dependent acid resistance mechanism, therefore constituting a putative target for QQ. A novel AHL-lactonase, named Aii20J, has been identified, cloned and over expressed from the marine bacterium Tenacibaculum sp. strain 20 J presenting a wide-spectrum QQ activity. The enzyme, belonging to the metallo-β-lactamase family, shares less than 31 % identity with the lactonase AiiA from Bacillus spp. Aii20J presents a much higher specific activity than the Bacillus enzyme, maintains its activity after incubation at 100 ºC for 10 minutes, is resistant to protease K and α-chymotrypsin, and is unaffected by wide ranges of pH. The addition of Aii20J (20 μg/mL) to cultures of E. coli K-12 to which OC6-HSL was added resulted in a significant reduction in cell viability in comparison with the acidresistant cultures derived from the presence of the signal. Results confirm the interaction between AHLs and SdiA in E. coli for the expression of virulence-related genes and reveal the potential use of Aii20J as anti-virulence strategy against important bacterial pathogens and in other biotechnological applications.
Collapse
Affiliation(s)
- C Mayer
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Romero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Muras
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A Otero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|