1
|
Lyu X, Yamano-Adachi N, Koga Y, Omasa T. COP II-mediated ER-to-Golgi transport is a bottleneck for IgNAR-Fc production in the Chinese hamster ovary cell expression system. J Biosci Bioeng 2025; 139:133-140. [PMID: 39586758 DOI: 10.1016/j.jbiosc.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The novel heavy-chain antibody known as immunoglobulin new antigen receptor (IgNAR) is derived from cartilaginous fishes such as sharks. IgNAR, which binds to antigens with the high specificity and affinity of a conventional IgG antibody and exhibits high resistance to denaturation, has potential as a next-generation antibody in biopharmaceutical and biotechnological applications. High-level expression of recombinant IgNAR in animal cells has been challenging. In our previous study, IgNAR was expressed as a fusion protein with a human IgG Fc region (IgNAR-Fc) in Chinese hamster ovary (CHO) cells, but did not meet the production level required for further research and application. In this study, we sought to identify the production bottleneck in CHO cells as a first step toward achieving abundant production of IgNAR. Using an established IgG high-production CHO cell line as a comparator, we found that the amounts of intracellular dimeric IgNAR-Fc produced in CHO cells were similar to those of intracellular dimeric IgG. Furthermore, the majority of intracellular IgNAR-Fc was retained in the endoplasmic reticulum (ER) and strongly colocalized to ERGIC-53, the cargo receptor for coat protein complex II (COP II)-coated vesicles. These findings suggest that COP II-mediated ER-to-Golgi transport may represent a bottleneck for IgNAR-Fc production in the CHO cell expression system.
Collapse
Affiliation(s)
- Xiaofang Lyu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Faculty of Applied Chemistry, Department of Engineering, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, Okayama 700-0005, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Niazi SK, Omarsdottir S. Lectin-Based Fluorescent Comparison of Glycan Profile-FDA Validation to Expedite Approval of Biosimilars. Int J Mol Sci 2024; 25:9240. [PMID: 39273189 PMCID: PMC11395676 DOI: 10.3390/ijms25179240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glycan profile comparisons are one of the most tedious analytical exercises for establishing compliance with recombinant therapeutic protein batches. Based on its intensive research, the FDA has confirmed that lectin array binding with fluorescent monitoring is the fastest and most reliable method for profile comparisons. Using a database of over 150 biological products expressed in nine diverse mammalian cell systems, the FDA immobilized 74 lectins to study their binding using fluorescently labeled glycoproteins. The FDA identified nine distinct lectins from a custom-designed lectin microarray: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHALs, which detect core fucose, terminal GlcNAc, terminal β-galactose, high mannose, α-2,3-linked sialic acids, α-2,6-linked sialic acids, bisecting GlcNAc, terminal α-galactose, and triantennary structures, respectively. This method can be used for screening and routine testing and to monitor batch-to-batch variability of therapeutic proteins, including establishing analytical similarity as a crucial part of biosimilar development.
Collapse
Affiliation(s)
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland;
| |
Collapse
|
3
|
Tsunoda Y, Yamano-Adachi N, Koga Y, Omasa T. Sar1A overexpression in Chinese hamster ovary cells and its effects on antibody productivity and secretion. J Biosci Bioeng 2024; 138:171-180. [PMID: 38806389 DOI: 10.1016/j.jbiosc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used for therapeutic antibody production. In cell line development, engineering secretion processes such as folding-related protein upregulation is an effective way of constructing cell lines with high recombinant protein productivity. However, there have been few studies on the transport of recombinant proteins between the endoplasmic reticulum (ER) and the Golgi apparatus. In this study, Sar1A, a protein involved in COPII vesicle formation, was focused on to improve antibody productivity by enhancing COPII vesicle-mediated antibody transport from the ER to the Golgi apparatus, and to clarify its effect on the secretion process. The constructed Sar1A-overexpressing CHO cell lines were batch-cultured, in which they showed an increased specific antibody production rate. The intracellular antibody accumulation and the specific localization of the intracellular antibodies were investigated by chase assay using a translation inhibitor and observed by immunofluorescence-based imaging analysis. The results showed that Sar1A overexpression reduced intracellular antibody accumulation, especially in the ER. The effects of the engineered antibody transport on the antibody's glycosylation profile and the unfolded protein response (UPR) pathway were analyzed by liquid chromatography-mass spectrometry and UPR-related gene expression evaluation, respectively. Sar1A overexpression lowered glycan galactosylation and induced a stronger UPR at the end of the batch culture. Sar1A overexpression enhanced the antibody productivity of CHO cells by modifying their secretion process. This approach could also contribute to the production of not only monoclonal antibodies but also other therapeutic proteins that require transport by COPII vesicles.
Collapse
Affiliation(s)
- Yu Tsunoda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Kirimoto Y, Yamano-Adachi N, Koga Y, Omasa T. Effect of co-overexpression of the cargo receptor ERGIC-53/MCFD2 on antibody production and intracellular IgG secretion in recombinant Chinese hamster ovary cells. J Biosci Bioeng 2023; 136:400-406. [PMID: 35963666 DOI: 10.1016/j.jbiosc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies are attractive biopharmaceuticals because of their high therapeutic effects, fewer side effects, and prolonged half-life in the blood. Chinese hamster ovary (CHO) cells are the most widely used host cell lines to produce therapeutic antibodies in industries. High-producing recombinant CHO cells can be established via overexpression of endogenous proteins. In this study, we focused on the intracellular traffic of an antibody-producing CHO cell line, CHO-HcD6. Assembled antibodies were accumulated in the endoplasmic reticulum (ER) in the cell. We hypothesized that the accumulation was due to the insufficient number of cargo receptors in the cell and focused on a cargo receptor, the ERGIC-53-MCFD2 complex, which transports expressed proteins from the ER to the Golgi apparatus. Overexpression of the cargo receptor transport was expected to improve antibody production. Exogenous ERGIC-53 and MCFD2 were transfected into CHO-HcD6 cells, and overexpressing CHO-HcD6 cells were constructed. As a result of overexpression, antibody productivity increased in batch cultivation. However, the chase assay results and immunofluorescence microscopic observations revealed intracellular IgG accumulation in the overexpressing cells. These results suggest that overexpression of cargo receptors not only promoted extracellular secretion but also enhanced the retention of intracellular antibodies.
Collapse
Affiliation(s)
- Yutaka Kirimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Yamano-Adachi N, Nakanishi Y, Tanaka W, Lai Y, Yamazaki M, Zenner L, Hata H, Omasa T. Artificial induction of chromosome aneuploidy in CHO cells alters their function as host cells. Biotechnol Bioeng 2023; 120:659-673. [PMID: 36385243 DOI: 10.1002/bit.28289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Chinese hamster ovary (CHO) cells are major host cells for biopharmaceuticals. During culture, the chromosome number of CHO cells alters spontaneously. Here, we investigated the effects of artificial changes in the chromosome number on productivity. When cell fusion between antibody-producing CHO-K1-derived cells was induced, we observed a wide range of aneuploidy that was not detected in controls. In particular, antibody productivities were high in clone-derived cell populations that retained a diverse chromosome number distribution. We also induced aneuploid cells using 3-aminobenzamide that causes chromosome non-disjunction. After induction of aneuploidy by 3-aminobenzamide, cells with an increased chromosome number were isolated, but cells with a decreased chromosome number could not be isolated. When antibody expression vectors were introduced into these isolated clones, productivity tended to increase in cells with an increased chromosome number. Further analysis was carried out by focusing on clone 5E8 with an average chromosome number of 37. When 5E8 cells were used as host, the productivity of multiple antibodies, including difficult-to-express antibodies, was improved compared with CHO-K1 cells. The copies of exogenous genes integrated into the genome were significantly increased in 5E8 cells. These findings expand the possibilities for host cell selection and contribute to the efficient construction of cell lines for recombinant protein production.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Wataru Tanaka
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - YuanShan Lai
- Graduate School of Advanced Technology and Science, Tokushima University, Tokushima, Japan
| | | | - Laura Zenner
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Senga Y, Doi M, Onitsuka M, Honda S. Live-cell imaging to analyze intracellular aggregation of recombinant IgG in CHO cells. Cell Chem Biol 2021; 29:120-132.e4. [PMID: 34739851 DOI: 10.1016/j.chembiol.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Recombinant immunoglobulin G (IgG) aggregates are formed during their production. However, the process underlying intracellular/extracellular aggregation in cell culture conditions is not well understood, and no effective method exists to assess IgG aggregates. Here, we establish an approach to detect intracellular aggregates using AF.2A1, a small artificial protein that binds to non-native IgG conformers and aggregates. Fluorescent-labeled AF.2A1 is prepared via conjugation and transfected into antibody-producing Chinese hamster ovary (CHO) cells. Micrographic images show intracellular IgG aggregates in CHO cells. The relative amount of intracellular aggregates (versus total intracellular IgG) differed depending on the type of additives used during cell culture. Interestingly, the relative amount of intracellular aggregates moderately correlates with that of in vitro extracellular IgG aggregates, suggesting they are secreted. This method will allow the investigation of antibody aggregation in cells, and may guide the production of therapeutic antibodies with high yield/quality.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8513, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Establishment of fast-growing serum-free immortalised cells from Chinese hamster lung tissues for biopharmaceutical production. Sci Rep 2020; 10:17612. [PMID: 33077772 PMCID: PMC7572389 DOI: 10.1038/s41598-020-74735-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.
Collapse
|
9
|
Komatsu K, Kumon K, Arita M, Onitsuka M, Omasa T, Yohda M. Effect of the disulfide isomerase PDIa4 on the antibody production of Chinese hamster ovary cells. J Biosci Bioeng 2020; 130:637-643. [PMID: 32878739 DOI: 10.1016/j.jbiosc.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 12/30/2022]
Abstract
Therapeutic monoclonal antibodies recognize and bind specific molecules on the surface of target cells, stimulating the immune system, which can attack these targeted cells. These antibodies are produced by mammalian cells, including Chinese hamster ovary (CHO) cells, because the formation of antibodies requires complicated posttranslational modifications, including peptidyl-prolyl cis/trans isomerization, disulfide bond formation, and glycosylation. Currently, it is thought that the efficient production of secretory proteins is limited by posttranslational processes. The ER is the biosynthesis site of all secreted and membrane proteins. The accumulation of unfolded proteins in the ER causes the ER stress response. During the ER stress state, various molecular chaperones are expressed to prevent proteins from the aggregate formation. The molecular chaperone involved in ER stress likely plays an essential role in the production of secretory proteins. The purpose of this study was to improve the production of monoclonal antibodies by cells. We elucidated the function of ER chaperones in the production of a monoclonal antibody. First, we quantitatively measured the mRNA expression levels of protein disulfide-isomerase family members. In CHO HcD6 cells treated with tunicamycin, the expression level of pdia4 was significantly increased. Second, we investigated the relationship between PDIa4 and antibody productivity in pdia4-knockdown cells. Both a decrease in the amount of secreted antibody and the accumulation of immature antibodies inside the cells were observed. Recombinant PDIa4 was able to refold the antibodies and Fabs. These results indicate that PDIa4 affects the production of monoclonal antibodies by catalyzing disulfide bond formation in these antibodies in CHO cells.
Collapse
Affiliation(s)
- Kei Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kento Kumon
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Sha S, Handelman G, Liu N, Xie D, Yoon S. At-line N-linked glycan profiling for monoclonal antibodies with advanced sample preparation and high-performance liquid chromatography. J Biosci Bioeng 2020; 130:327-333. [DOI: 10.1016/j.jbiosc.2020.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
|
11
|
Samy A, Kaneyoshi K, Omasa T. Improvement of Intracellular Traffic System by Overexpression of KDEL Receptor 1 in Antibody-Producing CHO Cells. Biotechnol J 2020; 15:e1900352. [PMID: 32073237 DOI: 10.1002/biot.201900352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Indexed: 11/08/2022]
Abstract
The localization of soluble endoplasmic reticulum (ER) chaperones in the cell organelle is mediated by the C-terminal KDEL (lysine, aspartic acid, glutamic acid and leucine) motif. This motif is recognized by the KDEL receptor, a seven-transmembrane protein that cycles between the ER and cis-Golgi to capture missorted KDEL chaperones from post-ER compartments in a pH-dependent manner. The KDEL receptor's target chaperones have a substantial role in protein folding and assembly. In this study, the gene expression level of KDEL receptor 1 shows a moderate upregulation during either ER stress or growth of Chinese hamster ovary (CHO) cells in batch culture, while the ER chaperones show higher upregulation. This might indicate the possibility of saturation of the ER retention machinery or at least hindered retention during late stage batch culture in recombinant CHO cells. KDELR1 is overexpressed in a monoclonal antibody-producing CHO cell line to improve the intracellular chaperone retention rate in the ER. An increase in the specific productivity of IgG1 by 13.2% during the exponential phase, and 23.8% in the deceleration phase of batch culture is observed. This is the first study to focus on the ER retention system as a cell engineering target for enhancing recombinant protein production.
Collapse
Affiliation(s)
- Andrew Samy
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kohei Kaneyoshi
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering , Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Yogo R, Yamaguchi Y, Watanabe H, Yagi H, Satoh T, Nakanishi M, Onitsuka M, Omasa T, Shimada M, Maruno T, Torisu T, Watanabe S, Higo D, Uchihashi T, Yanaka S, Uchiyama S, Kato K. The Fab portion of immunoglobulin G contributes to its binding to Fcγ receptor III. Sci Rep 2019; 9:11957. [PMID: 31420591 PMCID: PMC6697678 DOI: 10.1038/s41598-019-48323-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Most cells active in the immune system express receptors for antibodies which mediate a variety of defensive mechanisms. These receptors interact with the Fc portion of the antibody and are therefore collectively called Fc receptors. Here, using high-speed atomic force microscopy, we observe interactions of human, humanized, and mouse/human-chimeric immunoglobulin G1 (IgG1) antibodies and their cognate Fc receptor, FcγRIIIa. Our results demonstrate that not only Fc but also Fab positively contributes to the interaction with the receptor. Furthermore, hydrogen/deuterium exchange mass spectrometric analysis reveals that the Fab portion of IgG1 is directly involved in its interaction with FcγRIIIa, in addition to the canonical Fc-mediated interaction. By targeting the previously unidentified receptor-interaction sites in IgG-Fab, our findings could inspire therapeutic antibody engineering.
Collapse
Affiliation(s)
- Rina Yogo
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Yuki Yamaguchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Central 5, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mari Shimada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tetsuo Torisu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shio Watanabe
- Thermo Fisher Scientific, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific, 3-9 Moriya-cho, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-0022, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
13
|
Kaneyoshi K, Kuroda K, Uchiyama K, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Secretion analysis of intracellular "difficult-to-express" immunoglobulin G (IgG) in Chinese hamster ovary (CHO) cells. Cytotechnology 2019; 71:305-316. [PMID: 30637508 DOI: 10.1007/s10616-018-0286-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouki Kuroda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima, 7708513, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan. .,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
14
|
Kaneyoshi K, Uchiyama K, Onitsuka M, Yamano N, Koga Y, Omasa T. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. J Biosci Bioeng 2019; 127:107-113. [DOI: 10.1016/j.jbiosc.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
|
15
|
Onitsuka M, Kadoya Y, Omasa T. Secretory leakage of IgG1 aggregates from recombinant Chinese hamster ovary cells. J Biosci Bioeng 2018; 127:752-757. [PMID: 30580968 DOI: 10.1016/j.jbiosc.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Aggregation of therapeutic antibodies is one of the most important issues to be resolved in manufacturing processes because of reduced efficacy and immunogenicity. Despite aggregation studies in vitro, little is known about the aggregation mechanism in cell culture processes. In this study, we investigated the process of aggregate formation of IgG1 antibodies during the culture of Chinese hamster ovary (CHO) cells to determine how aggregation occurs. A recombinant CHO cell line was cultivated in a bioreactor, and purified IgG1 from daily culture supernatants was analyzed by size exclusion chromatography. We found a linear correlation between the peak plots of IgG1 by-products, dimeric and aggregated IgG1, and integrated viable cell density, indicating that these by-products were secreted from CHO cells at a constant secretion rate. In addition, aggregate formation was not reproduced in pseudo-culture experiments, and the solution structures of intracellular and extracellular IgG1 aggregates were similar. These results support the concept of secretory leakage of IgG1 by-products. Secreted aggregates appeared to be in an alternatively folded state, which can pass through the protein quality control system in mammalian cells.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Yukinori Kadoya
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E-801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Yamano N, Omasa T. EGCG improves recombinant protein productivity in Chinese hamster ovary cell cultures via cell proliferation control. Cytotechnology 2018; 70:1697-1706. [PMID: 30069612 PMCID: PMC6269352 DOI: 10.1007/s10616-018-0243-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022] Open
Abstract
Chinese hamster ovary cell lines are good manufacturing practice-certified host cells and are widely used in the field of biotechnology to produce therapeutic antibodies. Recombinant protein productivity in cells is strongly associated with cell growth. To control cell proliferation, many approaches have previously been tested including: genetic engineering, chemical additives such as cell cycle inhibitors, and temperature shift of the culture. To be widely adopted in the biopharmaceutical industry, the culture methods should be simple, uniform and safe. To this end, we examined the use a natural compound to improve the production capacity. In this study, we focused on the antioxidants, catechin polyphenols, which are found in green tea, for cell proliferation control strategies. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin that induces G0/G1 cell cycle arrest, was investigated for its effect on recombinant protein production. Adding EGCG to the cell culture media resulted in slower cellular growth and longer cell longevity, which improved the specific productivity and total yield of recombinant IgG1 in batch cultures by almost 50% for an extra 2 or 3 days of culture. A lower L-glutamine consumption rate was observed in cells cultured in EGCG-containing media, which may be suggesting that there was less stress in the culture environment. Additionally, EGCG did not affect the N-glycan quality of IgG1. Our results indicated that adding EGCG only on the first day of the culture enhanced the specific productivity and total amount of recombinant protein production in batch cultures. This approach may prove to be useful for biopharmaceutical production.
Collapse
Affiliation(s)
- Noriko Yamano
- Manufacturing Technology Association of Biologics, 7-1-49, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Onitsuka M, Kinoshita Y, Nishizawa A, Tsutsui T, Omasa T. Enhanced IgG1 production by overexpression of nuclear factor kappa B inhibitor zeta (NFKBIZ) in Chinese hamster ovary cells. Cytotechnology 2017; 70:675-685. [PMID: 29188404 DOI: 10.1007/s10616-017-0170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023] Open
Abstract
Several engineering strategies have been employed to improve the production of therapeutic recombinant proteins in Chinese hamster ovary (CHO) cell lines. We have focused on unfolded protein response-based engineering and reported that ATF4 overexpression increases protein production. In this study, transcriptome analysis of ATF4-overexpressed CHO cells was performed using high-coverage expression profiling, to search for another key factor contributing to recombinant protein production. We observed the upregulated expression of transcription factor, nuclear factor (NF)-kappa-B inhibitor zeta (NFKBIZ or Iκbζ), in ATF4-overexpressed cells. A total of 1917 bp of CHO NFKBIZ cDNA was cloned, and two stable cell lines overexpressing NFKBIZ were constructed. We investigated the effects of NFKBIZ on IgG1 production in CHO cells. Although the two stable cell lines, NFKBIZ-A and -B, had the opposite phenotypes in cell growth, the specific IgG1 production rate of both cell lines was enhanced by 1.2-1.4-fold. In the NFKBIZ-A cell line, the synergistic effect between enhanced viable cell density and improved specific IgG1 production rate brought about a large increase in the final IgG1 titer. Luciferase-based NF-κB signaling assay results suggest that altered p50/p50 signaling seems to be due to the opposite phenotypes in cell growth. No difference was observed in the translational levels and intracellular assembly states of IgG1 between mock and two NFKBIZ cell lines, indicating that the secretion machinery of correctly folded IgG1 was enhanced in NFKBIZ-overexpressing cell lines.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.
| | - Yukie Kinoshita
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Akitoshi Nishizawa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomomi Tsutsui
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.,Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Aich U, Lakbub J, Liu A. State-of-the-art technologies for rapid and high-throughput sample preparation and analysis ofN-glycans from antibodies. Electrophoresis 2016; 37:1468-88. [DOI: 10.1002/elps.201500551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Udayanath Aich
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Jude Lakbub
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Aston Liu
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| |
Collapse
|
19
|
Badsha MB, Kurata H, Onitsuka M, Oga T, Omasa T. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. J Biosci Bioeng 2016; 122:117-24. [PMID: 26803706 DOI: 10.1016/j.jbiosc.2015.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
Abstract
Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis.
Collapse
Affiliation(s)
- Md Bahadur Badsha
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Masayoshi Onitsuka
- Institute of Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Takushi Oga
- Human Metabolome Technologies, Inc., 24 Denby Road, Suite 217, Boston, MA 02134, USA.
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|