1
|
Ruta LL, Farcasanu IC. Saccharomyces cerevisiae and Caffeine Implications on the Eukaryotic Cell. Nutrients 2020; 12:nu12082440. [PMID: 32823708 PMCID: PMC7468979 DOI: 10.3390/nu12082440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Caffeine-a methylxanthine analogue of the purine bases adenine and guanine-is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.
Collapse
|
2
|
Zhang P, Li B, Wen P, Wang P, Yang Y, Chen Q, Chang Y, Hu X. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10881-10889. [PMID: 30246534 DOI: 10.1021/acs.jafc.8b04370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urea is the most important precursor of ethyl carbamate (EC), a harmful carcinogenic product, in fermented wines. In this study, the effects of four GATA transcriptional factors (Gln3p, Gat1p, Dal80p ,and Gzf3p) on extracellular urea and EC formation and transcriptional changes in urea degradation related genes ( DUR1,2 and DUR3) were examined. Compared to the WT strain, the Δ gzf3 mutant showed 18.7% urea reduction and exhibited synergistic effects with overexpressed Gln3p1-653 and Gat1p1-375 on extracellular urea reduction. Moreover, Δ gzf3+Gln3p1-653 and Δ gzf3+Gat1p1-375 showed significant 38.7% and 43.7% decreases in urea concentration and 41.7% and 48.5% decreases in EC concentration, respectively, in a model rice wine system. These results provide a promising way to reduce urea and EC formation during wine fermentation and raise some cues for the regulations of the four GATA transcriptional factors on the expression of individual nitrogen catabolite repression sensitive genes and their related metabolism pathway.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peng Wen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peilin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yu Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yuxin Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
3
|
Liu Y, Yang M, Cheng H, Sun N, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1291-1303. [PMID: 28867216 DOI: 10.1016/j.bbapap.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022]
Abstract
Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| |
Collapse
|