1
|
Waheed Iqbal M, Tang X, Riaz T, Mahmood S, Zhang Y, Zhao M, Yun J, Li J, Qi X. Exploiting the biocatalytic potential of co-expressed l-fucose isomerase and d-tagatose 3-epimerase for the biosynthesis of 6-deoxy-l-sorbose. Bioorg Chem 2024; 145:107189. [PMID: 38350272 DOI: 10.1016/j.bioorg.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
6-Deoxy-l-sorbose (6-DLS) is an imperative rare sugar employed in food, agriculture, pharmaceutical and cosmetic industeries. However, it is a synthetic and very expensive rare sugars, previously synthesized by chemo-enzymatic methods through a long chain of chemical processes. Recently, enzymatic synthesis of rare sugars has attracted a lot of attention due to its advantages over synthetic methods. In this work, a promising approach for the synthesis of 6-DLS from an inexpensive sugar l-fucose was identified. The genes for l-fucose isomerase from Paenibacillus rhizosphaerae (Pr-LFI) and genes for d-tagatose-3-epimerase from Caballeronia fortuita (Cf-DTE) have been used for cloning and co-expression in Escherichia coli, developed a recombinant plasmid harboring pANY1-Pr-LFI/Cf-DTE vector. The recombinant co-expression system exhibited an optimum activity at 50 °C of temperature and pH 6.5 in the presence of Co2+ metal ion which inflated the catalytic activity by 6.8 folds as compared to control group with no metal ions. The recombinant co-expressed system was stable up to more than 50 % relative activity after 12 h and revealed a melting temperature (Tm) of 63.38 °C exhibiting half-life of 13.17 h at 50 °C. The co-expression system exhibited, 4.93, 11.41 and 16.21 g/L of 6-DLS production from initial l-fucose concentration of 30, 70 and 100 g/L, which equates to conversion yield of 16.44 %, 16.30 % and 16.21 % respectively. Generally, this study offers a promising strategy for the biological production of 6-DLS from an inexpensive substrate l-fucose in slightly acidic conditions with the aid of co-expression system harboring Pr-LFI and CF-DTE genes.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| | - Jia Li
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Furevi A, Ruda A, Angles d’Ortoli T, Mobarak H, Ståhle J, Hamark C, Fontana C, Engström O, Apostolica P, Widmalm G. Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligo- and polysaccharides using the computer program CASPER. Carbohydr Res 2022; 513:108528. [DOI: 10.1016/j.carres.2022.108528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/02/2023]
|
3
|
Tang H, Ju X, Zhao J, Li L. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Appl Microbiol Biotechnol 2021; 105:509-523. [PMID: 33394147 DOI: 10.1007/s00253-020-11075-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Ribose-5-phosphate isomerase B (RpiB) was first identified in the pentose phosphate pathway responsible for the inter-conversion of ribose-5-phosphate and ribulose-5-phosphate. Though there are seldom key enzymes in central carbon metabolic system developed as useful biocatalysts, RpiB with the advantages of wide substrate scope and high stereoselectivity has become a potential biotechnological tool to fulfill the demand of rare sugars currently. In this review, the pivotal roles of RpiB in carbon metabolism are summarized, and their sequence identity and structural similarity are discussed. Substrate binding and catalytic mechanisms are illustrated to provide solid foundations for enzyme engineering. Interesting differences in origin, physiological function, structure, and catalytic mechanism between RpiB and ribose-5-phosphate isomerase A are introduced. Moreover, enzyme engineering efforts for rare sugar production are stressed, and prospects of future development are concluded briefly in the viewpoint of biocatalysis. Aided by the progresses of structural and computational biology, the application of RpiB will be promoted greatly in the preparation of valuable molecules. KEY POINTS: • Detailed illustration of RpiB's vital function in central carbon metabolism. • Potential of RpiB in sequence, substrate scope, and mechanism for application. • Enzyme engineering efforts to promote RpiB in the preparation of rare sugars.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No.99 Xuefu Rd., Huqiu district, Suzhou, 215009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Waheed Iqbal M, Riaz T, Hassanin HA, Zhang W, Saeed M, Mahmood S, Abdalla M, Mu W. Biochemical characterization of recombinant L-fucose isomerase from Caldanaerobius polysaccharolyticus for L-fuculose production. Int J Biol Macromol 2020; 146:965-975. [DOI: 10.1016/j.ijbiomac.2019.09.221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023]
|
5
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
6
|
Liu Z, Yoshihara A, Kelly C, Heap JT, Marqvorsen MHS, Jenkinson SF, Wormald MR, Otero JM, Estévez A, Kato A, Fleet GWJ, Estévez RJ, Izumori K. 6-Deoxyhexoses froml-Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology. Chemistry 2016; 22:12557-65. [PMID: 27439720 DOI: 10.1002/chem.201602482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Zilei Liu
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| | - Ciarán Kelly
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - John T. Heap
- Centre for Synthetic Biology and Innovation; Department of Life Sciences; Imperial College; London SW7 2AZ UK
| | - Mikkel H. S. Marqvorsen
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Sarah F. Jenkinson
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Mark R. Wormald
- Glycobiology Institute; Department of Biochemistry; University of Oxford; Oxford OX1 3QU UK
| | - José M. Otero
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Amalia Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Atsushi Kato
- Department of Hospital Pharmacy; University of Toyama; Toyama 930-0194 Japan
| | - George W. J. Fleet
- Chemistry Research Laboratory; Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Ramón J. Estévez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education; Kagawa University; Miki Kagawa 761-0795 Japan
| |
Collapse
|
7
|
Yoshida H, Yoshihara A, Ishii T, Izumori K, Kamitori S. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates. Appl Microbiol Biotechnol 2016; 100:10403-10415. [PMID: 27368739 DOI: 10.1007/s00253-016-7673-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Akihide Yoshihara
- Rare Sugar Research Center and Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Tomohiko Ishii
- Faculty of Engineering, Kagawa University, Hayashi-cho, Takamatsu, Kagawa, Japan
| | - Ken Izumori
- Rare Sugar Research Center and Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.
| |
Collapse
|