1
|
Menon A, Pandurangan Maragatham V, Samuel M, Arunraj R. Properties and applications of α-galactosidase in agricultural waste processing and secondary agricultural process industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:21-31. [PMID: 37555350 DOI: 10.1002/jsfa.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Agriculture products form the foundation building blocks of our daily lives. Although they have been claimed to be renewable resources with a low carbon footprint, the agricultural community is constantly challenged to overcome two post-harvest bottlenecks: first, farm bio-waste, a substantial economic and environmental burden to the farming sector, and second, an inefficient agricultural processing sector, plagued by the need for significant energy input to generate the products. Both these sectors require extensive processing technologies that are demanding in their energy requirements and expensive. To address these issues, an enzyme(s)-based green chemistry is available to break down complex structures into bio-degradable compounds that source alternate energy with valuable by-products and co-products. α-Galactosidase is a widespread class of glycoside hydroxylases that hydrolyzes α-galactosyl moieties in simple and complex oligo and polysaccharides, glycolipids, and glycoproteins. As a result of its growing importance, in this review we discuss the source of the enzyme, production and purification systems, and enzyme properties. We also elaborate on the enzyme's potential in agricultural bio-waste management, secondary agricultural industries like sugar refining, soymilk derivatives, food and confectionery, and animal feed processing. Insight into this vital enzyme will provide new avenues for less expensive green chemistry-based secondary agricultural processing and agricultural sustainability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anindita Menon
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Vetriselvi Pandurangan Maragatham
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| | - Marcus Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Rex Arunraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, India
| |
Collapse
|
2
|
Othman AM, Elshafei AM, Elsayed MA, Ibrahim GE, Hassan MM, Mehanna NS. Biochemical characterization and insights into the potency of the acidic Aspergillus niger NRC114 purified α-galactosidase in removing raffinose family oligosaccharides from soymilk yogurt. BMC Biotechnol 2023; 23:3. [PMID: 36721204 PMCID: PMC9887927 DOI: 10.1186/s12896-023-00773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Because humans lack α-galactosidase, foods containing certain oligosaccharides from the raffinose family, such as soybeans and other legumes, may disrupt digestion and cause flatulence. RESULTS Aspergillus niger NRC114 α-galactosidase was purified using protein precipitation, gel filtration, and ion exchange chromatography steps, which resulted in a 123-fold purification. The purified enzyme was found to be 64 kDa using the SDS-PAGE approach. The optimum pH and temperature of the purified α-galactosidase were detected at pH 3.5 and 60 ºC, respectively. The pure enzyme exhibited potent acidic pH stability at pH 3.0 and pH 4.0 for 2 h, and it retained its full activity at 50 ºC and 60 ºC for 120 min and 90 min, respectively. The enzyme was activated using 2.5 mM of K+, Mg2+, Co2+, or Zn2+ by 14%, 23%, 28%, and 11%, respectively. The Km and Vmax values of the purified enzyme were calculated to be 0.401 µM and 14.65 μmol min-1, respectively. The soymilk yogurt showed an increase in its total phenolic content and total flavonoids after enzyme treatment, as well as several volatile compounds that were detected and identified using GC-MS analysis. HPLC analysis clarified the enzymatic action in the hydrolysis of raffinose family oligosaccharides. CONCLUSION The findings of this study indicate the importance of A. niger NRC114 α-galactosidase enzyme for future studies, especially its applications in a variety of biological fields.
Collapse
Affiliation(s)
- Abdelmageed M. Othman
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Ali M. Elshafei
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Maysa A. Elsayed
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Gamil E. Ibrahim
- grid.419725.c0000 0001 2151 8157Chemistry of Flavor and Aroma Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Mohamed M. Hassan
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Nayra S. Mehanna
- grid.419725.c0000 0001 2151 8157Dairy Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| |
Collapse
|
3
|
Anisha GS. Molecular advances in microbial α-galactosidases: challenges and prospects. World J Microbiol Biotechnol 2022; 38:148. [PMID: 35773364 DOI: 10.1007/s11274-022-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022]
Abstract
α-Galactosidase (α-D-galactosidase galactohydrolase; EC 3.2.1.22), is an industrially important enzyme that hydrolyzes the galactose residues in galactooligosaccharides and polysaccharides. The industrial production of α-galactosidase is currently insufficient owing to the high production cost, low production efficiency and low enzyme activity. Recent years have witnessed an increase in the worldwide research on molecular techniques to improve the production efficiency of microbial α-galactosidases. Cloning and overexpression of the gene sequences coding for α-galactosidases can not only increase the enzyme yield but can confer industrially beneficial characteristics to the enzyme protein. This review focuses on the molecular advances in the overexpression of α-galactosidases in bacterial and yeast/fungal expression systems. Recombinant α-galactosidases have improved biochemical and hydrolytic properties compared to their native counterparts. Metabolic engineering of microorganisms to produce high yields of α-galactosidase can also assist in the production of value-added products. Developing new variants of α-galactosidases through directed evolution can yield enzymes with increased catalytic activity and altered regioselectivity. The bottlenecks in the recombinant production of α-galactosidases are also discussed. The knowledge about the hurdles in the overexpression of recombinant proteins illuminates the emerging possibilities of developing a successful microbial cell factory and widens the opportunities for the production of industrially beneficial α-galactosidases.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The transglycosylation behavior and capacity of two clan GH-D α-galactosidases, BoGal36A from the gut bacterium Bacteroides ovatus and Aga27A from the guar plant, was investigated and compared. The enzymes were screened for the ability to use para-nitrophenyl-α-galactoside (pNP-Gal), raffinose and locust bean gum (LBG) galactomannan as glycosyl donors with the glycosyl acceptors methanol, propanol, allyl alcohol, propargyl alcohol and glycerol using mass spectrometry. Aga27A was, in general, more stable in the presence of the acceptors. HPLC analysis was developed and used as a second screening method for reactions using raffinose or LBG as a donor substrate with methanol, propanol and glycerol as acceptors. Time-resolved reactions were set up with raffinose and methanol as the donor and acceptor, respectively, in order to develop an insight into the basic transglycosylation properties, including the ratio between the rate of transglycosylation (methyl galactoside synthesis) and rate of hydrolysis. BoGal36A had a somewhat higher ratio (0.99 compared to 0.71 for Aga27A) at early time points but was indicated to be more prone to secondary (product) hydrolysis in prolonged incubations. The methyl galactoside yield was higher when using raffinose (48% for BoGal36A and 38% for Aga27A) compared to LBG (27% for BoGal36A and 30% for Aga27A).
Collapse
|
5
|
Anisha GS. Microbial α-galactosidases: Efficient biocatalysts for bioprocess technology. BIORESOURCE TECHNOLOGY 2022; 344:126293. [PMID: 34752888 DOI: 10.1016/j.biortech.2021.126293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Galactomannans, abundantly present in plant biomass, can be used as renewable fermentation feedstock for biorefineries working for the production of bioethanol and other value-added products. The complete and efficient bioconversion of biomass to fermentable sugars for the generation of biofuels and other value-added products require the concerted action of accessory enzymes like α-galactosidases, which can work in cohesion with other carbohydrases in an enzyme cocktail. In the paper industry, α-galactosidases enhance the bleaching effect of endo-β-1,4-mannanases on softwood kraft pulp. Microbial α-galactosidases also find applications in the treatment of legume foods, recovery of sucrose from sugar beet syrup, improving the rheological properties of galactomannans, and synthesis of α-galactooligosaccharides to be used as functional food ingredients. Owing to their industrial applications, there is a surge in the research focused on α-galactosidases. The current review illustrates the diverse industrial applications of microbial α-galactosidases and their challenges and prospects.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
6
|
Zhang H, Wang Y, Brunecky R, Yao B, Xie X, Zheng F, Luo H. A Swollenin From Talaromyces leycettanus JCM12802 Enhances Cellulase Hydrolysis Toward Various Substrates. Front Microbiol 2021; 12:658096. [PMID: 33854492 PMCID: PMC8039133 DOI: 10.3389/fmicb.2021.658096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/10/2021] [Indexed: 12/02/2022] Open
Abstract
Swollenins exist within some fungal species and are candidate accessory proteins for the biodegradation of cellulosic substrates. Here, we describe the identification of a swollenin gene, Tlswo, in Talaromyces leycettanus JCM12802. Tlswo was successfully expressed in both Trichoderma reesei and Pichia pastoris. Assay results indicate that TlSWO is capable of releasing reducing sugars from lichenan, barley β-glucan, carboxymethyl cellulose sodium (CMC-Na) and laminarin. The specific activity of TlSWO toward lichenan, barley β-glucan, carboxymethyl cellulose sodium (CMC-Na) and laminarin is 9.0 ± 0.100, 8.9 ± 0.100, 2.3 ± 0.002 and 0.79 ± 0.002 U/mg, respectively. Additionally, TlSWO had disruptive activity on Avicel and a synergistic effect with cellobiohydrolases, increasing the activity on pretreated corn stover by up to 72.2%. The functional diversity of TlSWO broadens its applicability in experimental settings, and indicating that it may be a promising candidate for future industrial applications.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Bin Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Huiying Luo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Liu Y, Yang J, Wang K, Duan F, Lu L. Carrier-Free Immobilization of α-Galactosidase as Nano-Biocatalysts for Synthesizing Prebiotic α-Galacto-Oligosaccharides. Molecules 2021; 26:1248. [PMID: 33669157 PMCID: PMC7956481 DOI: 10.3390/molecules26051248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%.
Collapse
Affiliation(s)
| | | | | | | | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; (Y.L.); (J.Y.); (K.W.); (F.D.)
| |
Collapse
|
8
|
Niu C, Wan X. Engineering a Trypsin-Resistant Thermophilic α-Galactosidase to Enhance Pepsin Resistance, Acidic Tolerance, Catalytic Performance, and Potential in the Food and Feed Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10560-10573. [PMID: 32829638 DOI: 10.1021/acs.jafc.0c02175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
α-Galactosidase has potential applications, and attempts to improve proteolytic resistance of enzymes have important values. We use a novel strategy for genetic manipulation of a pepsin-sensitive region specific for a pepsin-sensitive but trypsin-resistant high-temperature-active Gal27B from Neosartorya fischeri to screen mutants with enhanced pepsin resistance. All enzymes were produced in Pichia pastoris to identify the roles of loop 4 (Gal27B-A23) and its key residue at position 156 (Gly156Arg/Pro/His) in pepsin resistance. Gal27B-A23 and Gly156Arg/Pro/His elevated pepsin resistance, thermostability, stability at low pH, activity toward raffinose (5.3-6.9-fold) and stachyose (about 1.3-fold), and catalytic efficiencies (up to 4.9-fold). Replacing the pepsin cleavage site Glu155 with Gly improved pepsin resistance but had no effect on pepsin resistance when Arg/Pro/His was at position 156. Thus, pepsin resistance could appear to occur through steric hindrance between the residue at the altered site and neighboring pepsin active site. In the presence of pepsin or trypsin, all mutations increased the ability of Gal27B to hydrolyze galactosaccharides in soybean flour (up to 9.6- and 4.3-fold, respectively) and promoted apparent metabolizable energy and nutrient digestibility in soybean meal for broilers (1.3-1.8-fold). The high activity and tolerance to heat, low pH, and protease benefit food and feed industry in a cost-effective way.
Collapse
Affiliation(s)
- Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China
| |
Collapse
|
9
|
Fei Y, Jiao W, Wang Y, Liang J, Liu G, Li L. Cloning and expression of a novel α-galactosidase from Lactobacillus amylolyticus L6 with hydrolytic and transgalactosyl properties. PLoS One 2020; 15:e0235687. [PMID: 32678825 PMCID: PMC7367483 DOI: 10.1371/journal.pone.0235687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/21/2020] [Indexed: 01/29/2023] Open
Abstract
Lactobacillus amylolyticus L6, a gram-positive amylolytic bacterium isolated from naturally fermented tofu whey (NFTW), was able to hydrolyze raffinose and stachyose for the production of α-galactosidase. The cell-free extract of L. amylolyticus L6 was found to exhibit glycosyltransferase activity to synthesize α-galacto-oligosaccharides (GOS) with melibiose as substrate. The coding genes of α-galactosidase were identified in the genome of L. amylolyticus L6. The α-galactosidase (AglB) was placed into GH36 family by amino acid sequence alignments with other α-galactosidases from lactobacilli. The optimal reaction conditions of pH and temperature for AglB were pH 6.0 and 37°C, respectively. Besides, potassium ion was found to improve the activity of AglB while divalent mercury ion, copper ion and zinc ion displayed different degrees of inhibition effect. Under the optimum reaction condition, AglB could catalyze the synthesis of GOS with degree of polymerization (DP) ≥5 by using 300 mM melibiose concentration as substrate. The maximum yield of GOS with (DP) ≥3 could reach 31.56% (w/w). Transgalactosyl properties made AglB a potential candidate for application in the production of GOS.
Collapse
Affiliation(s)
- Yongtao Fei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - WenJuan Jiao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute, Guangzhou, China
| | - Ying Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinglong Liang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gongliang Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Li Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Biochemical characterization of a novel protease-resistant α-galactosidase from Paecilomyces thermophila suitable for raffinose family oligosaccharides degradation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Production of isofloridoside from galactose and glycerol using α-galactosidase from Alicyclobacillus hesperidum. Enzyme Microb Technol 2020; 134:109480. [DOI: 10.1016/j.enzmictec.2019.109480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
|
12
|
Bhatia S, Singh A, Batra N, Singh J. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol 2019; 150:1294-1313. [PMID: 31747573 DOI: 10.1016/j.ijbiomac.2019.10.140] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Abstract
α-Galactosidase, (E.C. 3.2.1.22) is an exoglycosidase that target galactooligosaccharides such as raffinose, melibiose, stachyose and branched polysaccharides like galactomannans and galacto-glucomannans by catalysing the hydrolysis of α-1,6 linked terminal galactose residues. The enzyme has been isolated and characterized from microbial, plant and animal sources. This ubiquitous enzyme possesses physiological significance and immense industrial potential. Optimization of the growth conditions and efficient purification strategies can lead to a significant increase in the enzyme production. To boost commercial productivity, cloning of novel α-galactosidase genes and their heterologous expression in suitable host has gained popularity. Enzyme immobilization leads to its greater reutilization, superior thermostability, pH tolerance and increased activity. The enzyme is well explored in food industry in the removal of raffinose family oligosaccharides (RFOs) in soymilk and sugar crystallization process. It also improves animal feed quality and biomass processing. Applications of the enzyme is in the area of biomedicine includes therapeutic advances in treatment of Fabry disease, blood group conversion and removal of α-gal type immunogenic epitopes in xenotransplantation. With considerable biotechnological applications, this enzyme has been vastly commercialized and holds greater future prospects.
Collapse
Affiliation(s)
- Sonu Bhatia
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Abhinashi Singh
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, G.G.D.S.D. College, Sector-32-C, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India.
| |
Collapse
|
13
|
An JL, Zhang WX, Wu WP, Chen GJ, Liu WF. Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system. Microb Cell Fact 2019; 18:180. [PMID: 31647018 PMCID: PMC6813122 DOI: 10.1186/s12934-019-1234-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Structurally stable α-galactosidases are of great interest for various biotechnological applications. More thermophilic α-galactosidases with high activity and structural stability have therefore to be mined and characterized. On the other hand, few studies have been performed to prominently enhance the AOX1 promoter activity in the commonly used Pichia pastoris system, in which production of some heterologous proteins are insufficient for further study. Results ReGal2 encoding a thermoactive α-galactosidase was identified from the thermophilic (hemi)cellulolytic fungus Rasamsonia emersonii. Significantly increased production of ReGal2 was achieved when ReGal2 was expressed in an engineered Pastoris pichia expression system with a modified AOX1 promoter and simultaneous fortified expression of Mxr1 that is involved in transcriptionally activating AOX1. Purified ReGal2 exists as an oligomer and has remarkable thermo-activity and thermo-tolerance, exhibiting maximum activity of 935 U/mg towards pNPGal at 80 °C and retaining full activity after incubation at 70 °C for 60 h. ReGal2 is insensitive to treatments by many metal ions and exhibits superior tolerance to protein denaturants. Moreover, ReGal2 efficiently hydrolyzed stachyose and raffinose in soybeans at 70 °C in 3 h and 24 h, respectively. Conclusion A modified P. pichia expression system with significantly enhanced AOX1 promoter activity has been established, in which ReGal2 production is markedly elevated to facilitate downstream purification and characterization. Purified ReGal2 exhibited prominent features in thermostability, catalytic activity, and resistance to protein denaturants. ReGal2 thus holds great potential in relevant biotechnological applications.
Collapse
Affiliation(s)
- Jian-Lu An
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China.
| | - Wei-Ping Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Guan-Jun Chen
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| | - Wei-Feng Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, People's Republic of China
| |
Collapse
|
14
|
|
15
|
Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int J Biol Macromol 2019; 131:1138-1146. [DOI: 10.1016/j.ijbiomac.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
|
16
|
Aulitto M, Fusco S, Limauro D, Fiorentino G, Bartolucci S, Contursi P. Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications. World J Microbiol Biotechnol 2019; 35:32. [DOI: 10.1007/s11274-019-2591-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
|
17
|
Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L. Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants. Mar Drugs 2018; 16:E349. [PMID: 30250010 PMCID: PMC6213131 DOI: 10.3390/md16100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1→6)- and -α(1→4)-linked galactobiosides from melibiose as well as -α(1→6)- and -α(1→3)-linked p-nitrophenyl-digalactosides (Gal₂-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1→3)-Gal-pNP synthesis and increased the Gal-α(1→4)-Gal yield compared to Gal-α(1→6)-Gal-pNP.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Stanislav Anastyuk
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Vladimir Isakov
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalya Kim
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| |
Collapse
|
18
|
Ye F, Geng XR, Xu LJ, Chang MC, Feng CP, Meng JL. Purification and characterization of a novel protease-resistant GH27 α-galactosidase from Hericium erinaceus. Int J Biol Macromol 2018; 120:2165-2174. [PMID: 30195005 DOI: 10.1016/j.ijbiomac.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
A novel 57-kDa acidic α-galactosidase designated as HEG has been purified from the dry fruiting bodies of Hericium erinaceus. The isolation protocol involved ion-exchange chromatography and gel filtration on a Superdex75 column. The purification fold and specific activity were 1251 and 46 units/mg, respectively. A BLAST search of internal peptide sequences obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis suggested that the enzyme belonged to the GH27 family. The activity of the enzyme reached its maximum at a pH of 6.0 or at 60 °C. The enzyme was stable within an acidic pH range of 2.2-7.0 and in a narrow temperature range. The enzyme was strongly inhibited by Zn2+, Fe3+, Ag+ ions and SDS. The Lineweaver-Burk plot suggested that the mode of inhibition by galactose and melibiose were of a mixed type. N-bromosuccinimide drastically decreased the activity of the enzyme, whereas diethylpyrocarbonate and carbodiimide strengthened the activity slightly. Moreover, the isolated enzyme displayed remarkable resistance to acid proteases, neutral proteases and pepsin. The enzyme could also hydrolyse oligosaccharides and polysaccharides. In addition, acidic protease promoted the hydrolysis of RFOs by HEG. The Km values of the enzyme towards pNPGal, raffinose and stachyose were 0.36 mM, 40.07 mM and 54.71 mM, respectively. These favourable properties increase the potential of the enzyme in the food industry and animal feed applications.
Collapse
Affiliation(s)
- Feng Ye
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Xue-Ran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Li-Jing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Cui-Ping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China
| | - Jun-Long Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Advancing Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, 030801, China.
| |
Collapse
|
19
|
Liu Y, Yang S, Yan Q, Liu J, Jiang Z. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int J Biol Macromol 2018; 108:98-104. [DOI: 10.1016/j.ijbiomac.2017.11.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022]
|
21
|
Li Y, Wang Y, Tu T, Zhang D, Ma R, You S, Wang X, Yao B, Luo H, Xu B. Two acidic, thermophilic GH28 polygalacturonases from Talaromyces leycettanus JCM 12802 with application potentials for grape juice clarification. Food Chem 2017; 237:997-1003. [DOI: 10.1016/j.foodchem.2017.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 11/29/2022]
|
22
|
Efficient and regioselective synthesis of globotriose by a novel α-galactosidase from Bacteroides fragilis. Appl Microbiol Biotechnol 2016; 100:6693-6702. [DOI: 10.1007/s00253-016-7464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
|
23
|
Zhou J, Liu Y, Lu Q, Zhang R, Wu Q, Li C, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2315-2324. [PMID: 26948050 DOI: 10.1021/acs.jafc.6b00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Lu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Chunyan Li
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|