1
|
Duran JE, Bayarri B, Sans C. Taguchi optimisation of the synthesis of vine-pruning-waste hydrochar as potential adsorbent for pesticides in water. BIORESOURCE TECHNOLOGY 2024; 399:130552. [PMID: 38458262 DOI: 10.1016/j.biortech.2024.130552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
This research aimed to synthesise an effective hydrochar adsorbent from vineyard pruning wastes to remove emerging contaminants as a potential valorisation product. The adsorption capacity of the hydrochar was optimised using the Taguchi method. Four synthesis variables were evaluated: hydrothermal reaction temperature, use of H3PO4 as a catalyst, number of acetone washes, and type of chemical cold activation. The simultaneous adsorption of five model pesticides (clothianidin (CTD), acetamiprid (ACE), 2,4-D, metalaxyl (MET), and atrazine (ATZ)) at an initial pH of 7 was studied. At optimum conditions, the hydrochar presented a total adsorption capacity of 22.7 μmol/g, representing a 2.7-fold improvement with respect to pristine hydrochar performance. High percentage removals were achieved for all pollutants (85 % CTD, 94 % ACE, 86 % MET, and 95 % ATZ) except for 2,4-D (4 %). This research provides a valuable reference for developing hydrochar adsorbents for pollution control and the valorisation of biomass wastes.
Collapse
Affiliation(s)
- J Esteban Duran
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franquès, 08028 Barcelona, Spain; School of Chemical Engineering, Universidad de Costa Rica, San José 11501, Costa Rica.
| | - Bernardí Bayarri
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franquès, 08028 Barcelona, Spain
| | - Carmen Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, C/Martí i Franquès, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Balkanli NE, Isildak I, Inan B, Ozer T, Ozcimen D. Monitoring Microalgal Growth of Chlorella minutissima with a New All Solid-state Contact Nitrate Selective Sensor. Biotechnol Prog 2022; 38:e3247. [PMID: 35202519 DOI: 10.1002/btpr.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/07/2022]
Abstract
As third generation feedstock, microalgae are microorganisms that can grow only in the optimum conditions. There are parameters including the concentration of macro and microelements in nutrient solution, pH, temperature, and light intensity that have significant impact on microalgal growth. In recent years, various sensing devices has been developed for sensitive measurement of these parameters during microalgal growth. In this study, a new potentiometric nitrate selective sensor was developed to indicate the nitrate uptake of microalgae and the effect of nitrate nutrient on microalgal growth, specifically, and this sensor was successfully applied to determine nitrate concentration in medium during microalgal growth. Moreover, the effects of nitrate, carbonate and phosphate concentration in the growth medium on biomass production of Chlorella minutissima were investigated by using Box-Behnken design method, and optimum conditions were determined for the highest biomass production of microalgae. As a result of the experiments, it was seen that the highest C. minutissima production was achieved using the medium consist of 2.63 g/L NaNO3 , 0.35 g/L Na2 CO3 and 0.4 g/L KH2 PO4. Statistically, it was observed that there was a proportional relationship between the microalgae production and investigated parameters such as carbon, nitrogen and phosphate amounts of culture mediums. The electrode showed a wide linear range between 1.0×10-1 and 5.0×10-5 M with a detection limit of the 5×10-6 M and the response time was found as 10 s. The results showed that developed nitrate selective sensor could be successfully applied for continuous measurement of nitrate in microalgal productions at reduced cost. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nihat Erdem Balkanli
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Ibrahim Isildak
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Benan Inan
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Tugba Ozer
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Didem Ozcimen
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| |
Collapse
|
3
|
Parichehreh R, Gheshlaghi R, Mahdavi MA, Kamyab H. Investigating the effects of eleven key physicochemical factors on growth and lipid accumulation of Chlorella sp. as a feedstock for biodiesel production. J Biotechnol 2021; 340:64-74. [PMID: 34454961 DOI: 10.1016/j.jbiotec.2021.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 01/22/2023]
Abstract
Biodiesel, as a renewable and eco-friendly energy source that can be produced through algae oil esterification, has recently received much attention. Maximization of algal biomass and lipid content is crucial for commercial biodiesel production. In this study, Chlorella sp. PG96, a microalgal strain isolated from urban wastewater, was identified considering its morphological and molecular characteristics. Fractional factorial design (211-7) was employed to screen medium and environmental factors for achieving high lipid productivity. The effects of eleven factors including light intensity, light spectrum, aeration rate, temperature, salinity, NaHCO3, CO2, NaNO3, NH4Cl, MgSO4.7H2O, and K2HPO4 and their interactions on growth characteristics of Chlorella sp. PG96 (biomass and lipid production) were statistically assessed. Based on the experimental results, lipid productivity was at its maximum (54.19 ± 8.40 mglipid L-1 day-1) under a combination of high levels of all factors. The analysis also showed that physical parameters of light intensity and temperature were more effective on algal growth compared to nutritional parameters. Furthermore, nitrogen source of ammonium and carbon source of bicarbonate played more significant roles in biomass and lipid production, compared with nitrate and CO2, respectively. Although the effect of sulfur limitation on cellular growth was similar to phosphorus deficiency, S-limitation had a greater impact on lipid accumulation. The interaction between NaHCO3 and NH4Cl was the most prominent interaction affecting all responses. It is concluded that Chlorella sp. PG96 at a high level of light intensity and temperature (22500 Lux and 32 °C, respectively) can be a prospective candidate for biodiesel production.
Collapse
Affiliation(s)
- Roya Parichehreh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Reza Gheshlaghi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Mahmood Akhavan Mahdavi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Azadi Square, Pardis Campus, Mashhad, Khorasan Razavi, Iran, Postal Code 9177948944.
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, Wang RRC, Hou Y, Hu Z. Overexpression of the Transcription Factor AtLEC1 Significantly Improved the Lipid Content of Chlorella ellipsoidea. Front Bioeng Biotechnol 2021; 9:626162. [PMID: 33681161 PMCID: PMC7925920 DOI: 10.3389/fbioe.2021.626162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microalgae are considered to be a highly promising source for the production of biodiesel. However, the regulatory mechanism governing lipid biosynthesis has not been fully elucidated to date, and the improvement of lipid accumulation in microalgae is essential for the effective production of biodiesel. In this study, LEAFY COTYLEDON1 (LEC1) from Arabidopsis thaliana, a transcription factor (TF) that affects lipid content, was transferred into Chlorella ellipsoidea. Compared with wild-type (WT) strains, the total fatty acid content and total lipid content of AtLEC1 transgenic strains were significantly increased by 24.20–32.65 and 22.14–29.91%, respectively, under mixotrophic culture conditions and increased by 24.4–28.87 and 21.69–30.45%, respectively, under autotrophic conditions, while the protein content of the transgenic strains was significantly decreased by 18.23–21.44 and 12.28–18.66%, respectively, under mixotrophic and autotrophic conditions. Fortunately, the lipid and protein content variation did not affect the growth rate and biomass of transgenic strains under the two culture conditions. According to the transcriptomic data, the expression of 924 genes was significantly changed in the transgenic strain (LEC1-1). Of the 924 genes, 360 were upregulated, and 564 were downregulated. Based on qRT-PCR results, the expression profiles of key genes in the lipid synthesis pathway, such as ACCase, GPDH, PDAT1, and DGAT1, were significantly changed. By comparing the differentially expressed genes (DEGs) regulated by AtLEC1 in C. ellipsoidea and Arabidopsis, we observed that approximately 59% (95/160) of the genes related to lipid metabolism were upregulated in AtLEC1 transgenic Chlorella. Our research provides a means of increasing lipid content by introducing exogenous TF and presents a possible mechanism of AtLEC1 regulation of lipid accumulation in C. ellipsoidea.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Analysis and Test Center, Guangzhou Higher Education Mega Center, Guangdong University of Technology, Guangzhou, China
| | - Jianhui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiuli Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Huhhot, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Richard R-C Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, United States
| | - Yongyue Hou
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Huhhot, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16952-16973. [PMID: 31030399 DOI: 10.1007/s11356-019-05138-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Juhi Mehtani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Parul A Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
6
|
Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR. Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal. J Biosci Bioeng 2019; 127:492-498. [DOI: 10.1016/j.jbiosc.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
7
|
Banerjee S, Singh H, Das D, Atta A. Process Optimization for Enhanced Biodiesel Production by Neochloris oleoabundans UTEX 1185 with Concomitant CO2 Sequestration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Surkatti R, Al-Zuhair S. Microalgae cultivation for phenolic compounds removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33936-33956. [PMID: 30353440 DOI: 10.1007/s11356-018-3450-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.
Collapse
Affiliation(s)
- Riham Surkatti
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
9
|
Ghosh UK. An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18673-18681. [PMID: 29705901 DOI: 10.1007/s11356-018-1967-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Four microalgal strains, namely, Tetraselmis indica (T. indica), Scenedesmus abundans (S. abundans), Spirulina sp., and Nostoc muscorum (N. muscorum) were cultivated on four different wastewaters in 1000 ml photobioreactors with 750 ml working volume under 94.5 μmol m-2 s-1 light intensity for 14 days for phycoremediation of wastewaters and sustainable biodiesel production. These microalgal strains attained maximum biomass growth in the secondary treated sewage (STS). Maximum biomass yield (0.6533 g L-1) and lipid productivity (25.44 mg L-1 d-1) for T. indica were achieved in STS. T. indica removed (63.6-78.24%) of nitrate, (60.90-65.97%) of phosphate, (61.01-80.01%) of ammonical nitrogen, and (71.16-85.70%) of total organic carbon (TOC) in all four wastewaters. The fatty acid methyl ester (FAME) profile of T. indica shows the presence of myristic acid (1.2%) pentadecylic acid (0.28%), palmitic acid (10.32%), oleic acid (34.59%), linoleic acid (12.38%), and eicosanoic acid (14.88%) in STS. This study demonstrates that T. indica is the most suitable microalgal species among the four microalgal strains selected for phycoremediation of wastewaters and higher biomass production for sustainable biodiesel production.
Collapse
Affiliation(s)
- Uttam Kumar Ghosh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
10
|
Chen CY, Chang YH. Engineering strategies for enhancing C. vulgaris ESP-31 lipid production using effluents of coke-making wastewater. J Biosci Bioeng 2018; 125:710-716. [DOI: 10.1016/j.jbiosc.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/06/2018] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
11
|
Liu PR, Yang ZY, Hong Y, Hou YL. An in situ method for synthesis of magnetic nanomaterials and efficient harvesting for oleaginous microalgae in algal culture. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Aboim JB, Oliveira D, Ferreira JE, Siqueira AS, Dall'Agnol LT, Rocha Filho GN, Gonçalves EC, Nascimento LA. Determination of biodiesel properties based on a fatty acid profile of eight Amazon cyanobacterial strains grown in two different culture media. RSC Adv 2016. [DOI: 10.1039/c6ra23268j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biotechnological potential of 8 Amazon cyanobacteria was studied and some species shown to be promising biodiesel source.
Collapse
Affiliation(s)
| | - Deborah Oliveira
- Laboratory of Catalysis and Oil Chemistry
- Federal University of Pará
- Belém
- Brazil
| | - John Eric Ferreira
- Laboratory of Catalysis and Oil Chemistry
- Federal University of Pará
- Belém
- Brazil
| | | | | | | | | | | |
Collapse
|