1
|
Merrild A, Johnsen NK, Zhang M, Bogojevic O, Ouyang Y, Guo Z. De Novo Synthesis of Perdeuterated Phosphoinositide by Installing a Non-native Phospholipid Biopathway in E. coli. ACS Synth Biol 2024; 13:3344-3353. [PMID: 39292964 DOI: 10.1021/acssynbio.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Phosphatidylinositol (PI) and its phosphorylated derivatives are of paramount importance in cellular functions and diseases. Understanding their diverse roles is, however, challenged by difficulties in synthesis and labeling techniques. In this proof-of-concept study, we demonstrate that PI can be straightforwardly de novo-synthesized and deuterium (2H)-labeled in Escherichia coli by genomic insertion of PI synthase from Trypanosoma brucei under constitutive synthetic promoter proD. Insertion into loci atpi-gidB and ybb revealed PI accumulation of 41% and 34% (mol/mol), respectively, when cultivated with glycerol as the sole carbon source. Growth of the atpi-gidB-PIS strain in deuterium-labeled (2H) substrates D2O, D8-glycerol, and D6-myo-inositol achieved PI deuteration of 90%, PE deuteration of 95%, and total fatty acids|fatty acid (FA) deuteration of 97%. This study offers an alternative convenient route to chemical and enzymatic labeling synthesis of PI; more excitingly, this work also, in principle, opens a door for tailoring the FA profile of deuterated PI/PE for task-specific application by repurposing FA biosynthesis pathways.
Collapse
Affiliation(s)
- Aske Merrild
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Niels Krabbe Johnsen
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Mingliang Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
- Engineering Research Center of Industrial Microbiology of Ministry of Education, Fujian Normal University, Visiting Researcher at Aarhus University 2022-2024, Fuzhou 350007, China
| | - Oliver Bogojevic
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Yi Ouyang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Wilson S, Panagabko C, Laleye T, Robinson M, Jagas S, Bowman D, Atkinson J. Synthesis of a photocleavable bola-phosphatidylcholine. Bioorg Med Chem 2023; 93:117465. [PMID: 37688997 DOI: 10.1016/j.bmc.2023.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Phosphatidylinositol transfer proteins (PITPs) are ubiquitous in eukaryotes and are involved in the regulation of phospholipid metabolism, membrane trafficking, and signal transduction. Sec14 is a yeast PITP that has been shown to transfer phosphatidylinositol (PI) or phosphatidylcholine (PC) from the endoplasmic reticulum to the Golgi. It is now believed that Sec14 may play a greater role than just shuttling PI and PC throughout the cell. Genetic evidence suggests that retrieval of membrane-bound PI by Sec14 also manages to present PI to the phosphatidylinositol-4-kinase, Pik1, to generate phosphatidylinositol-4-phosphate, PI(4)P. To test this hypothetical model, we designed a photocleavable bolalipid to span the entire membrane, having one phosphatidylcholine or phosphatidylinositol headgroup on each leaflet connected by a photocleavable diacid. Sec14 should not be able to present the bola-PI to Pik1 for phosphorylation as the head group will be difficult to lift from the bilayer as it is tethered on the opposite leaflet. After photocleavage the two halves would behave as a normal phospholipid, thus phosphorylation by Pik1 would resume. We report here the synthesis of a photocleavable bola-PC, a precursor to the desired bola-PI. The mono-photocleavable bola-PC lipid was designed to contain two glycerol molecules with choline head groups connected through a phosphodiester bond at the sn3 position. Each glycerol was acylated with palmitic acid at the sn1 position. These two glycerol moieties were then connected through their respective sn2 hydroxyls via a photocleavable dicarboxylic acid containing a nitrophenyl ethyl photolabile protecting group. The bola-PC and its precursors were found to undergo efficient photocleavage when irradiated in solution or in vesicles with 365 nm light for two minutes. Treatment of the bola-PC with a mutant phospholipase D and myo-inositol produced a mono-inositol bola-PC-PI.
Collapse
Affiliation(s)
- Sean Wilson
- Department of Chemistry, Brock University, Ontario, Canada
| | | | - Tayo Laleye
- Department of Chemistry, Brock University, Ontario, Canada
| | | | - Samuel Jagas
- Department of Chemistry, Brock University, Ontario, Canada
| | - David Bowman
- Advanced Biomanufacturing Centre, Brock University, Ontario, Canada
| | | |
Collapse
|
3
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
4
|
Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2115083119. [PMID: 35344438 PMCID: PMC9169118 DOI: 10.1073/pnas.2115083119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
Collapse
|
5
|
Iwasaki Y, Sakurai Y, Damnjanović J. A simple chemo-enzymatic synthesis of alkyl-acyl (plasmanyl) phospholipids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Wang L, Iwasaki Y, Andra KK, Pandey K, Menon AK, Bütikofer P. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J Biol Chem 2018; 293:18318-18327. [PMID: 30287690 PMCID: PMC6254352 DOI: 10.1074/jbc.ra118.004213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Members of the G protein-coupled receptor and TMEM16 (transmembrane protein 16) protein families are phospholipid scramblases that facilitate rapid, bidirectional movement of phospholipids across a membrane bilayer in an ATP-independent manner. On reconstitution into large unilamellar vesicles, these proteins scramble more than 10,000 lipids/protein/s as measured with co-reconstituted fluorescent nitrobenzoxadiazole (NBD)-labeled phospholipids. Although NBD-labeled phospholipids are ubiquitously used as reporters of scramblase activity, it remains unclear whether the NBD modification influences the quantitative outcomes of the scramblase assay. We now report a refined biochemical approach for measuring the activity of scramblase proteins with radiolabeled natural phosphatidylinositol ([3H]PI) and exploiting the hydrolytic activity of bacterial PI-specific phospholipase C (PI-PLC) to detect the transbilayer movement of PI. PI-PLC rapidly hydrolyzed 50% of [3H]PI in large symmetric, unilamellar liposomes, corresponding to the lipid pool in the outer leaflet. On reconstitution of a crude preparation of yeast endoplasmic reticulum scramblase, purified bovine opsin, or purified Nectria haematococca TMEM16, the extent of [3H]PI hydrolysis increased, indicating that [3H]PI from the inner leaflet had been scrambled to the outer leaflet. Using transphosphatidylation, we synthesized acyl-NBD-PI and used it to compare our PI-PLC-based assay with conventional fluorescence-based methods. Our results revealed quantitative differences between the two assays that we attribute to the specific features of the assays themselves rather than to the nature of the phospholipid. In summary, we have developed an assay that measures scrambling of a chemically unmodified phospholipid by a reconstituted scramblase.
Collapse
Affiliation(s)
- Lei Wang
- From the Institute of Biochemistry and Molecular Medicine and; Graduate School for Cellular and Biochemical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yugo Iwasaki
- the Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan, and
| | - Kiran K Andra
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Kalpana Pandey
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Anant K Menon
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065.
| | - Peter Bütikofer
- From the Institute of Biochemistry and Molecular Medicine and.
| |
Collapse
|
7
|
Damnjanović J, Matsunaga N, Adachi M, Nakano H, Iwasaki Y. Facile Enzymatic Synthesis of Phosphatidylthreonine Using an Engineered Phospholipase D. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jasmina Damnjanović
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Nozomi Matsunaga
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Masaatsu Adachi
- Laboratory of Organic ChemistryDepartment of Applied Molecular BiosciencesGraduate School of Bioagricultural SciencesNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Hideo Nakano
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| | - Yugo Iwasaki
- Laboratory of Molecular BiotechnologyDepartment of Bioengineering SciencesGraduate School of Bioagricultural ScienceNagoya University, Furo‐choChikusa‐kuNagoya464‐8601Japan
| |
Collapse
|
8
|
Hänninen S, Batchu KC, Hokynar K, Somerharju P. Simple and rapid biochemical method to synthesize labeled or unlabeled phosphatidylinositol species. J Lipid Res 2017; 58:1259-1264. [PMID: 28420658 DOI: 10.1194/jlr.d075960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/18/2017] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol (PI) is the precursor of many important signaling molecules in eukaryotic cells and, most probably, PI also has important functions in cellular membranes. However, these functions are poorly understood, which is largely due to that i) only few PI species with specific acyl chains are available commercially and ii) there are no simple methods to synthesize such species. Here, we present a simple biochemical protocol to synthesize a variety of labeled or unlabeled PI species from corresponding commercially available phosphatidylcholines. The protocol can be carried out in a single vial in a two-step process which employs three enzymatic reactions mediated by i) commercial phospholipase D from Streptomyces chromofuscus, ii) CDP-diacylglycerol synthase overexpressed in E. coli and iii) PI synthase of Arabidopsis thaliana ectopically expressed in E. coli The PI product is readily purified from the reaction mixture by liquid chromatography since E. coli does not contain endogenous PI or other coeluting lipids. The method allows one to synthesize and purify labeled or unlabeled PI species in 1 or 2 days.Typically, 40-60% of (unsaturated) PC was converted to PI albeit the final yield of PI was less (25-35%) due to losses upon purification.
Collapse
Affiliation(s)
- Satu Hänninen
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| | - Krishna Chaithanya Batchu
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| | - Kati Hokynar
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and.,Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland and
| |
Collapse
|
9
|
Inoue A, Adachi M, Damnjanović J, Nakano H, Iwasaki Y. Direct Enzymatic Synthesis of 1-Phosphatidyl-β-D-glucose by Engineered Phospholipase D. ChemistrySelect 2016. [DOI: 10.1002/slct.201600839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Arisa Inoue
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Masaatsu Adachi
- Laboratory of Organic Chemistry; Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Jasmina Damnjanović
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Yugo Iwasaki
- Laboratory of Molecular Biotechnology; Department of Bioengineering Sciences; Graduate School of Bioagricultural Sciences, Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|