1
|
Asefi N, Singh RK. The Impact of Cold Plasma and Plasma-Activated Water on Germination of Grains and Legumes for Enhanced Nutritional Value. Curr Nutr Rep 2025; 14:57. [PMID: 40198546 DOI: 10.1007/s13668-025-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Sprouts are valued for their rich nutritional profile, fresh taste, and ease of production. As consumer demand for healthier foods increases, innovative methods are needed to enhance sprout quality. Cold Plasma (CP) and Plasma-Activated Water (PAW) have emerged as promising, sustainable technologies in agriculture, particularly for improving seed germination and plant growth. RECENT FINDINGS CP and PAW influence plant hormonal activity, improve water uptake, and modify seed coats, leading to enhanced sprout quality. These technologies impact bioactive compounds such as proteins, carbohydrates, enzymes, polyphenols, Gamma-Aminobutyric Acid, and antioxidants, which promote seed growth and alter the nutritional and functional properties of sprouts. PAW, with its unique chemical properties, acidifies the environment, modifies redox potential, and produces reactive oxygen and nitrogen species, which are essential for metabolic pathways in seed germination. Researchers are addressing challenges like discoloration, surface etching, and bioactive material degradation to optimize PAW applications in sprout production. CP and PAW offer cost-effective and eco-friendly solutions for improving sprout quality by stimulating seed germination and growth. Their effects on bioactive compounds and metabolic pathways make them valuable tools in modern agriculture. However, optimizing their application is crucial to maximizing benefits while minimizing potential drawbacks. Further research is needed to refine these technologies for commercial sprout production.
Collapse
Affiliation(s)
- Narmela Asefi
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Rakesh K Singh
- Department of Food Science and Technology, University of Georgia, CAES, Campus 0211 Food Science Building 100 Cedar St, Athens, GA, USA
| |
Collapse
|
2
|
Utama GL, Sahab NRM, Nurmilah S, Yarlina VP, Subroto E, Balia RL. Unveiling microbial dynamics in terasi spontaneous fermentation: Insights into glutamate and GABA production. Curr Res Food Sci 2024; 10:100950. [PMID: 39760015 PMCID: PMC11699049 DOI: 10.1016/j.crfs.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Terasi, a traditional Indonesian seafood product made from shrimp, undergoes fermentation facilitated by a consortium of microorganisms, including Lactic Acid Bacteria (LAB) and yeast, which contribute to its distinctive umami flavor. This study investigates the microbial dynamics and production of key metabolites, including γ-aminobutyric acid (GABA), during terasi fermentation. Total Plate Count (TPC) and High-Performance Liquid Chromatography (HPLC) were used to monitor changes in glutamate and GABA levels, with glutamate increasing from 105.18 mg/mL on day 3-139.19 mg/mL on day 14, and GABA rising from 90.49 mg/mL to 106.98 mg/mL over the same period. Metagenomic analysis using high-throughput sequencing of bacterial 16 S rRNA identified Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidota as dominant phyla. While LAB populations remained relatively stable, yeast became detectable from day 4. Notably, core bacterial genera such as Vibrio, Macrococcus, Staphylococcus, Exiguobacterium, Jeotgalicoccus, Prevotella, Salinicoccus, Bacillus, Pseudarthrobacter, and Vagococcus were highly abundant and played significant roles in GABA production, likely due to their glutamate decarboxylase activity. These findings reveal a clear correlation between microbial succession and metabolite production, offering valuable insights into the fermentation process of terasi. This study enhances the understanding of traditional food fermentation and presents opportunities to optimize beneficial compounds in terasi products.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Centre for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Siti Nurmilah
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Vira Putri Yarlina
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Edy Subroto
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Roostita L. Balia
- Veterinary Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Hisaki K, Sakamoto C, Matsui H, Ueno H, Ueda Y. Contribution of Gamma-Aminobutyric Amino Acid and Free Amino Acids to Low-Salt Whole-Wheat Bread through the Addition of Spice Extracts-An Approach Based on Taste Quality. Foods 2024; 13:1900. [PMID: 38928841 PMCID: PMC11203152 DOI: 10.3390/foods13121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Given the link between excessive salt consumption and hypertension, reducing salt levels in bread, an important staple food in Japan, is essential. γ-Aminobutyric acid (GABA) has a salty taste-enhancing effect in vivo, and its production is influenced by the type of spice extract in vitro. However, the effects of spices on GABA levels, total free amino acid composition, and taste quality in whole-wheat bread remain unclear. Therefore, this study aimed to investigate whether the addition of spice extracts, which do not affect bread flavor and taste, can increase the GABA level in low-salt whole-wheat bread and whether free amino acid content affects the taste quality of bread using an automatic home bread maker. Through free amino acid composition analysis and sensory testing, we evaluated the influence of six spice extracts on the composition of free amino acids, including GABA, in whole-wheat bread. We found that cumin and anise extracts were effective in increasing the GABA level to approximately twice that in whole-wheat bread. Moreover, both the preference and saltiness of the bread were favorable, indicating that these extracts are useful for reducing the salt content of whole-wheat bread. This study provides a theoretical basis for guiding industrial production.
Collapse
Affiliation(s)
- Kumiko Hisaki
- Department of Nutrition, Osaka International College, Moriguchi 570-8555, Japan
| | - Chikae Sakamoto
- Department of Design for Contemporary Life, Kyoto Bunkyo Junior College, Uji 611-0041, Japan;
- Department of Food and Agricultural Science, Graduate School of Agriculture, Ryukoku University, Otsu 520-2194, Japan (Y.U.)
| | - Hina Matsui
- Department of Food and Agricultural Science, Graduate School of Agriculture, Ryukoku University, Otsu 520-2194, Japan (Y.U.)
| | - Hiroshi Ueno
- Research Institute for Food and Agriculture, Ryukoku University, Otsu 520-2194, Japan;
| | - Yukiko Ueda
- Department of Food and Agricultural Science, Graduate School of Agriculture, Ryukoku University, Otsu 520-2194, Japan (Y.U.)
- Department of Food Science and Human Nutrition, Faculty of Agriculture, Ryukoku University, Otsu 520-2194, Japan
| |
Collapse
|
4
|
Yılmaz C, Ecem Berk Ş, Gökmen V. Effect of different stress conditions on the formation of amino acid derivatives by Brewer's and Baker's yeast during fermentation. Food Chem 2024; 435:137513. [PMID: 37774628 DOI: 10.1016/j.foodchem.2023.137513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The effects of environmental stresses on the formation of amino acid derivatives by Saccharomyces cerevisiae NCYC 88 and Saccharomyces cerevisiae NCYC 79 were investigated. Fermentation was performed in model systems under different temperature, pH, alcohol, phenolic, and osmotic stress conditions, as well as in beer and dough. According to stress response molecules, yeasts were more affected by osmotic, temperature, and alcohol stresses. Both yeast strains increased the formation of kynurenic acid, tryptophan ethyl ester, tryptophol, and gamma-aminobutyric acid under osmotic stress conditions in model systems. Indole-3-acetic acid was found to be higher in the ferulic acid stress dough (262 µg/kg dry weight, d.w.) compared to the control dough (132 µg/kg d.w.) at the end of the fermentation. The results may enable the development of new strategies for designing novel foods with a desired composition of bioactive amino acid derivatives.
Collapse
Affiliation(s)
- Cemile Yılmaz
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Şenel Ecem Berk
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkiye.
| |
Collapse
|
5
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. RETRACTED: Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
6
|
Yavarzadeh M, Anwar F, Saadi S, Saari N. Production of glycerolamines based conjugated γ-aminobutyric acids using microbial COX and LOX as successor enzymes to GAD. Enzyme Microb Technol 2023; 169:110282. [PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
Collapse
Affiliation(s)
- Marjan Yavarzadeh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine, 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine, 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Zhang L, Yue Y, Wang X, Dai W, Piao C, Yu H. Optimization of fermentation for γ-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue). Bioprocess Biosyst Eng 2022; 45:1111-1123. [PMID: 35179639 DOI: 10.1007/s00449-022-02702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
γ-Aminobutyric acid (GABA) is a non-protein amino acid with a variety of physiological functions. Recently, yeast Kluyveromyces marxianus strains involved in the catabolism and anabolism of GABA can be used as a microbial platform for GABA production. Okara, rich in nutrients, can be used as a low-cost fermentation substrate for the production of functional materials. This study first proved the advantages of the okara medium to produce GABA by K. marxianus C21 when L-glutamate (L-Glu) or monosodium glutamate (MSG) is the substrate. The highest production of GABA was obtained with 4.31 g/L at optimization condition of culture temperature 35 °C, fermentation time 60 h, and initial pH 4.0. Furthermore, adding peptone significantly increased the GABA production while glucose and vitamin B6 had no positive impact on GABA production. This research provided a powerful new strategy of GABA production by K. marxianus C21 fermentation and is expected to be widely utilized in the functional foods industry to increase GABA content for consumers as a daily supplement as suggested.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yang Yue
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China.
| |
Collapse
|
8
|
Sun X, Wang J, Li C, Zheng M, Zhang Q, Xiang W, Tang J. The Use of γ-Aminobutyric Acid-Producing Saccharomyces cerevisiae SC125 for Functional Fermented Beverage Production from Apple Juice. Foods 2022; 11:foods11091202. [PMID: 35563926 PMCID: PMC9102084 DOI: 10.3390/foods11091202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional fermented beverages enriched with γ-aminobutyric acid (GABA) has been pursued because of the health benefits of GABA; however, few studies have described GABA production by yeast. Therefore, this study aimed to produce fermented apple beverages enriched with GABA produced by Saccharomyces cerevisiae SC125. Golden Delicious apples were fermented by S. cerevisiae SC125 to produce a novel functional beverage; commercial yeast was used as the control. The GABA, organic acid, and volatile compound content during the fermentation process was investigated by high-performance liquid chromatography and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A yield of 898.35 ± 10.10 mg/L GABA was achieved by the efficient bioconversion of L-monosodium glutamate. Notably, the S. cerevisiae SC125-fermented beverage produced several unique volatile compounds, such as esters, alcohols, 6-decenoic acid, and 3-hydroxy−2-butanone, and showed significantly enhanced contents of organic acids, including malic acids, citric acid, and quinic acid. Sensory analysis demonstrated that the S. cerevisiae SC125-fermented apple beverage had improved aroma, flavor, and overall acceptability. In conclusion, a fermented functional apple beverage containing GABA was efficiently produced using S. cerevisiae SC125.
Collapse
|
9
|
Psychobiotics, gut microbiota and fermented foods can help preserving mental health. Food Res Int 2022; 152:110892. [DOI: 10.1016/j.foodres.2021.110892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
|
10
|
Chemical profiling and metabolic mechanism of Pixian doubanjiang, a famous condiment in Chinese cuisine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Hussin FS, Chay SY, Hussin ASM, Wan Ibadullah WZ, Muhialdin BJ, Abd Ghani MS, Saari N. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci Rep 2021; 11:9417. [PMID: 33941803 PMCID: PMC8093275 DOI: 10.1038/s41598-021-88436-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5′-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83–58.56 mg/100 g) compared to the prebiotics (34.19–40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.
Collapse
Affiliation(s)
- Farah Salina Hussin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia.,Section of Food Engineering Technology, Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur, Melaka, Malaysia
| | - Shyan Yea Chay
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Wan Zunairah Wan Ibadullah
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Mohd Syahmi Abd Ghani
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang Selangor, Malaysia.
| |
Collapse
|
12
|
Sahab NR, Subroto E, Balia RL, Utama GL. γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon 2020; 6:e05526. [PMID: 33251370 PMCID: PMC7680766 DOI: 10.1016/j.heliyon.2020.e05526] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/13/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
γ-aminobutyric acid (GABA) is synthesised by glutamic acid decarboxylase which catalyses the decarboxylation of L-glutamic acid. L-glutamic acid is formed by α-ketoglutarate in the TCA cycle by glutamic acid dehydrogenase (GDH). GABA is found in the human brain, plants, animals and microorganisms. GABA functions as an antidepressant, antihypertensive, antidiabetic and immune system enhancer and has a good effect on neural disease. As GABA have pharmaceutical properties, conditions for GABA production need to be established. Microbiological GABA production is more safe and eco-friendly rather than chemical methods. Moreover, it is easier to control conditions of production using microorganisms compared to production in plants and animals. GABA production in fermented foods and beverages has the potential to be optimised to increase the functional effect of fermented foods and beverages.
Collapse
Affiliation(s)
- Novia R.M. Sahab
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Edy Subroto
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Roostita L. Balia
- Faculty of Animal Husbandry, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
| | - Gemilang L. Utama
- Magister of Agro-Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km.21 Jatinangor 45363, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Jl. Sekeloa Selatan No. 1 Bandung 40134, Indonesia
| |
Collapse
|
13
|
Zargarchi S, Saremnezhad S. Gamma-aminobutyric acid, phenolics and antioxidant capacity of germinated indica paddy rice as affected by low-pressure plasma treatment. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Nakamura T, Ando A, Tomita S, Saito K. Changes in Metabolite Profiles of Dough and Regulation of Metabolite Concentrations by Baker’s Yeast. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Akira Ando
- Institute of Vegetable and Floriculture Science, NARO
| | | | | |
Collapse
|
15
|
Luo W, Sun DW, Zhu Z, Wang QJ. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Dangi AK, Dubey KK, Shukla P. Strategies to Improve Saccharomyces cerevisiae: Technological Advancements and Evolutionary Engineering. Indian J Microbiol 2017; 57:378-386. [PMID: 29151637 PMCID: PMC5671434 DOI: 10.1007/s12088-017-0679-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 11/28/2022] Open
Abstract
Bakery industries are thriving to augment the diverse properties of Saccharomyces cerevisiae to increase its flavor, texture and nutritional parameters to attract the more consumers. The improved technologies adopted for quality improvement of baker's yeast are attracting the attention of industry and it is playing a pivotal role in redesigning the quality parameters. Modern yeast strain improvement tactics revolve around the use of several advanced technologies such as evolutionary engineering, systems biology, metabolic engineering, genome editing. The review mainly deals with the technologies for improving S. cerevisiae, with the objective of broadening the range of its industrial applications.
Collapse
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Mahendergarh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 India
| |
Collapse
|