1
|
Gong Y, Klinkaewboonwong N, Hayashi R, Zhou Y, Nishida I, Saito R, Goshima T, Nishi T, Watanabe D, Hirata D, Akao T, Ohya Y. Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production. Biosci Biotechnol Biochem 2025; 89:910-917. [PMID: 40097305 DOI: 10.1093/bbb/zbaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Isoamyl acetate and ethyl caproate are the primary aroma compounds responsible for the fruity fragrance characteristic of Ginjo sake. Simultaneous high-level production of both compounds is crucial to achieving a balanced aroma and complex flavor. Isoamyl acetate is predominantly produced by hda1∆/hda1∆ and LEU4(G516S)/LEU4(G516S), while ethyl caproate is produced in high quantities by FAS2(G1250S)/FAS2(G1250S). In this study, to maximize the production of both aroma compounds, genome editing was employed to generate sake yeast strains combining these mutations. After small-scale fermentation tests were conducted to evaluate the production of aroma compounds, we found that the isoamyl acetate-enhancing effect of hda1∆/hda1∆ was almost completely masked by FAS2(G1250S)/FAS2(G1250S). In contrast, the effects of LEU4(G516S)/LEU4(G516S) were not entirely masked by FAS2(G1250S)/FAS2(G1250S), resulting in 2.4- and 5.4-fold greater production of isoamyl acetate and ethyl caproate, respectively. This study highlights the utility of genome editing in the combinatorial breeding of sake yeast.
Collapse
Grants
- 22H02216 Ministry of Education, Culture, Sports, Science and Technology
- 21K05377 Ministry of Education, Culture, Sports, Science and Technology
- 23K13865 Ministry of Education, Culture, Sports, Science and Technology
- Institute for Fermentation, Osaka
Collapse
Affiliation(s)
- Yifeng Gong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Norapat Klinkaewboonwong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, Hiroshima, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Hiroshima, Japan
| | | | - Rei Saito
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | | | - Tomoyuki Nishi
- Research Center, Asahi Sake Brewing Co., Ltd, Niigata, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, Niigata, Japan
- Faculty of Agriculture, Niigata University, Niigata, Japan
- Research Center, Asahi Sake Brewing Co., Ltd, Niigata, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Hiroshima, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Kanai M, Shibata T, Zhou Y, Hayashi R, Fukuba I, Kochi T, Teramoto S, Shimoi H, Takahashi H, Akao T. Efficient genes identification via quantitative trait loci analysis by crossbreeding of sake and laboratory yeast. Appl Microbiol Biotechnol 2025; 109:84. [PMID: 40198396 PMCID: PMC11978678 DOI: 10.1007/s00253-025-13470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Saccharomyces cerevisiae, a unicellular eukaryotic microorganism, includes various strains used in alcoholic beverage production, like sake, shochu/awamori, and wine yeasts. Despite being the same "Saccharomyces cerevisiae", each strain has unique genes and mutations that make them suitable for specific production processes. We focused on sake yeast, Saccharomyces cerevisiae, suitable for sake making. To identify genes and mutations contributing to sake yeast's characteristics more efficiently, we improved the quantitative trait loci (QTL) analysis system. This genetic statistical method used spore-separating haploid strains (F1 segregant haploids) from crossing sake yeast and laboratory yeast haploid strains. We increased the number of F1 segregant haploids for QTL analysis from 100 to 400 and set DNA markers uniformly across the genome (approximately 12 Mbp) at 5,267 locations using single nucleotide polymorphisms (SNPs) spaced about 3 kb apart. Additionally, a small-scale sake making test using 400 F1 segregant haploids and QTL analysis of ethanol concentration in sake sample identified the PBS2 gene and its causative mutation (amino acid substitution at position 545). The PBS2 gene was also implicated in producing organic acids (fumaric, succinic, and malic acids) and inorganic acids (phosphoric acid) for sake. These findings validated the improved QTL analysis system as effective genes screening method. KEY POINTS: • A new QTL analysis system was constructed using sake and laboratory yeast. • PBS2 gene involved in the ethanol-producing capacity of Saccharomyces cerevisiae was identified. • PBS2 gene was also involved in the organic acid concentration in sake.
Collapse
Affiliation(s)
- Muneyoshi Kanai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Tomoko Shibata
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Yan Zhou
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ikuko Fukuba
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Takayuki Kochi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Satoko Teramoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Hitoshi Shimoi
- The Brewing Society of Japan, 2-6-30 Takinogawa, Kita-Ku, Tokyo, 114-0023, Japan
| | - Hidekazu Takahashi
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
3
|
Kobashi Y, Yoshizaki Y, Okutsu K, Futagami T, Tamaki H, Takamine K. THI3 contributes to isoamyl alcohol biosynthesis through thiamine diphosphate homeostasis. J Biosci Bioeng 2024; 137:108-114. [PMID: 38102023 DOI: 10.1016/j.jbiosc.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Isoamyl alcohol is a precursor of isoamyl acetate, an aromatic compound that imparts the ginjo aroma to sake. The isoamyl alcohol biosynthesis pathway in yeasts involves the genes PDC1, PDC5, PDC6, ARO10, and THI3 encoding enzymes that decarboxylate α-ketoisocaproic acid to isovaleraldehyde. Among these genes, THI3 is the main gene involved in isoamyl alcohol biosynthesis. Decreased production of isoamyl alcohol has been reported in yeast strains with disrupted THI3 (Δthi3). However, it has also been reported that high THI3 expression did not enhance decarboxylase activity. Therefore, the involvement of THI3 in isoamyl alcohol biosynthesis remains unclear. In this study, we investigated the role of THI3 in isoamyl alcohol biosynthesis. While reproducing previous reports of reduced isoamyl alcohol production by the Δthi3 strain, we observed that the decrease in isoamyl alcohol production occurred only at low yeast nitrogen base concentrations in the medium. Upon investigating individual yeast nitrogen base components, we found that the isoamyl alcohol production by the Δthi3 strain reduced when thiamine concentrations in the medium were low. Under low-thiamine conditions, both thiamine and thiamine diphosphate (TPP) levels decreased in Δthi3 cells. We also found that the decarboxylase activity of cell-free extracts of the Δthi3 strain cultured in a low-thiamine medium was lower than that of the wild-type strain, but was restored to the level of the wild-type strain when TPP was added. These results indicate that the loss of THI3 lowers the supply of TPP, a cofactor for decarboxylases, resulting in decreased isoamyl alcohol production.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
4
|
Kobashi Y, Nakayama E, Fukumori N, Shimojima A, Tabira M, Nishimura Y, Mukae M, Muto A, Nakashima N, Okutsu K, Yoshizaki Y, Futagami T, Takamine K, Tamaki H. Homozygous gene disruption in diploid yeast through a single transformation. J Biosci Bioeng 2024; 137:31-37. [PMID: 37981488 DOI: 10.1016/j.jbiosc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
As industrial shochu yeast is a diploid strain, obtaining a strain with mutations in both allelic genes was considered difficult. We investigated a method for disrupting two copies of a homozygous gene with a single transformation. We designed a disruption cassette containing an intact LYS5 flanked by nonfunctional ura3 gene fragments divided into the 5'- and 3'-regions. These fragments had overlapping sequences that enabled LYS5 removal as well as URA3 regeneration through loop-out. Furthermore, both ends of the disruption cassette had an additional repeat sequence that allowed the cassette to be removed from the chromosome through loop-out. First, 45 bases of 5'- and 3'-regions of target gene sequences were added on both ends of this cassette using polymerase chain reaction; the resultant disruption cassette was introduced into a shochu yeast strain (ura3/ura3 lys5/lys5); then, single allele disrupted strains were selected on Lys drop-out plates; and after cultivation in YPD medium, double-disrupted strains, in which replacement of another allelic gene with disruption cassette by loss of heterozygosity and regeneration of URA3 in one of the cassettes by loop-out, were obtained by selection on Ura and Lys drop-out plates. The disruption cassettes were removed from the double-disrupted strain via loop-out between repeat sequences in the disruption cassette. The strains that lost either URA3 or LYS5 were counter-selected on 5-fluoroorotic acid or α-amino adipic acid plates, respectively. Using this method, we obtained leu2/leu2 and leu2/leu2 his3/his3 strains in shochu yeast, demonstrating the effectiveness and repeatability of this gene disruption technique in diploid yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuki Kobashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Eri Nakayama
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoki Fukumori
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ayane Shimojima
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Tabira
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yuki Nishimura
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Manami Mukae
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ai Muto
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Naoto Nakashima
- Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kayu Okutsu
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
5
|
Yoshimoto H, Bogaki T. Mechanisms of production and control of acetate esters in yeasts. J Biosci Bioeng 2023; 136:261-269. [PMID: 37607842 DOI: 10.1016/j.jbiosc.2023.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/24/2023]
Abstract
Acetate esters, such as isoamyl acetate and ethyl acetate, are major aroma components of alcoholic beverages. They are produced through synthesis from acetyl CoA and the corresponding alcohol by alcohol acetyltransferase (AATase) with specific control of reaction factors, including unsaturated fatty acids and precursors, the percentage of nitrogen, and oxygen. However, the mechanisms by which these specific reaction factors affect acetate ester production remain largely unknown. The cellular mechanisms underlying the effects of these factors on acetate ester production were examined by purifying AATase from yeast, characterizing it, and cloning the ATF gene encoding AATase from sake yeast and bottom-fermenting yeast. Genetic and biochemical studies suggested that the decrease in acetate production with the addition of oxygen and unsaturated fatty acids was due to a decrease in enzyme synthesis resulting from transcriptional repression of the ATF1 gene, which is responsible for most of the AATase activity. Furthermore, these results suggest that expression of the ATF1 gene is intricately regulated by a number of transcriptional regulatory genes such as ROX1 and RAP1. Based on these results, the mechanism of ester regulation by oxygen, unsaturated fatty acids and precursors, and ratio of nitrogen source are becoming clearer from a molecular biological point of view. The physiological significance of ester production by yeast is then discussed. In this review, we summarize the studies on AATase, ATF gene, regulation of ester production, and physiological significance of acetate ester.
Collapse
Affiliation(s)
- Hiroyuki Yoshimoto
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company Limited, Technovilleage Center 3F, 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 236-8628, Japan.
| | - Takayuki Bogaki
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu Dezaike-cho, Nishinomiya, Hyogo 663-8227, Japan
| |
Collapse
|
6
|
Negoro H, Ishida H. Development of sake yeast breeding and analysis of genes related to its various phenotypes. FEMS Yeast Res 2022; 22:6825454. [PMID: 36370450 DOI: 10.1093/femsyr/foac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sake is a traditional Japanese alcoholic beverage made from rice and water, fermented by the filamentous fungi Aspergillus oryzae and the yeast Saccharomyces cerevisiae. Yeast strains, also called sake yeasts, with high alcohol yield and the ability to produce desired flavor compounds in the sake, have been isolated from the environment for more than a century. Furthermore, numerous methods to breed sake yeasts without genetic modification have been developed. The objectives of breeding include increasing the efficiency of production, improving the aroma and taste, enhancing safety, imparting functional properties, and altering the appearance of sake. With the recent development of molecular biology, the suitable sake brewing characteristics in sake yeasts, and the causes of acquisition of additional phenotypes in bred yeasts have been elucidated genetically. This mini-review summarizes the history and lineage of sake yeasts, their genetic characteristics, the major breeding methods used, and molecular biological analysis of the acquired strains. The data in this review on the metabolic mechanisms of sake yeasts and their genetic profiles will enable the development of future strains with superior phenotypes.
Collapse
Affiliation(s)
- Hiroaki Negoro
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| |
Collapse
|
7
|
Baba S, Hamasaki T, Sawada K, Orita R, Nagano Y, Kimura K, Goto M, Kobayashi G. Breeding sake yeast and identification of mutation patterns by synchrotron light irradiation. J Biosci Bioeng 2021; 132:265-270. [PMID: 34088597 DOI: 10.1016/j.jbiosc.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Sake yeast is one of the important factors that characterize the aroma and taste of sake. To obtain sake yeast strains with different metabolic capabilities from other strains, breeding of a sake yeast is an effective way. In this study, sake yeast strain Y5201 was mutagenized by synchrotron light irradiation to obtain the mutant strains showing different brewing characteristics from parental strain Y5201, and comparative genome analysis between strain Y5201 and mutant strains was performed to identify mutation points and patterns induced by synchrotron light irradiation. Screening with the drug-resistant and fermentation tests selected the nine mutants (C18, C19, C29, C50, C51, C52, C54, T25, and T49) from the mutagenized Y5201 cells. Principal component analysis results based on the analysis of the small-scale brewing test metabolites showed that the mutant strain C19 was different from other strains, which had higher productivity of ethyl caproate and isoamyl acetate than those of the Y5201. Comparative genome analysis revealed that mutants by synchrotron light irradiation had a higher diversity of single nucleotide substitutions and a higher frequency of Indel (insertion/deletion) in these DNA than ethyl methanesulfonate and UV irradiation. These results suggest that synchrotron light irradiation is an effective and unique mutagen for yeast breeding.
Collapse
Affiliation(s)
- Shuichiro Baba
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tomohiro Hamasaki
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kazutaka Sawada
- Industrial Technology Center of SAGA, 114 Nabeshimacho, Saga 849-0932, Japan
| | - Ryo Orita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Yukio Nagano
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Analytical Research Center for Experimental Sciences, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kei Kimura
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Genta Kobayashi
- United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.
| |
Collapse
|
8
|
Volatile Compound Profiling in Czech and Spanish Lager Beers in Relation to Used Production Technology. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01583-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Holt S, Miks MH, de Carvalho BT, Foulquié-Moreno MR, Thevelein JM. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol Rev 2019; 43:193-222. [PMID: 30445501 PMCID: PMC6524682 DOI: 10.1093/femsre/fuy041] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/13/2018] [Indexed: 12/03/2022] Open
Abstract
Aroma compounds provide attractiveness and variety to alcoholic beverages. We discuss the molecular biology of a major subset of beer aroma volatiles, fruity and floral compounds, originating from raw materials (malt and hops), or formed by yeast during fermentation. We introduce aroma perception, describe the most aroma-active, fruity and floral compounds in fruits and their presence and origin in beer. They are classified into categories based on their functional groups and biosynthesis pathways: (1) higher alcohols and esters, (2) polyfunctional thiols, (3) lactones and furanones, and (4) terpenoids. Yeast and hops are the main sources of fruity and flowery aroma compounds in beer. For yeast, the focus is on higher alcohols and esters, and particularly the complex regulation of the alcohol acetyl transferase ATF1 gene. We discuss the release of polyfunctional thiols and monoterpenoids from cysteine- and glutathione-S-conjugated compounds and glucosides, respectively, the primary biological functions of the yeast enzymes involved, their mode of action and mechanisms of regulation that control aroma compound production. Furthermore, we discuss biochemistry and genetics of terpenoid production and formation of non-volatile precursors in Humulus lupulus (hops). Insight in these pathways provides a toolbox for creating innovative products with a diversity of pleasant aromas.
Collapse
Affiliation(s)
- Sylvester Holt
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Marta H Miks
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10–726 Olsztyn, Poland
| | - Bruna Trindade de Carvalho
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven-Heverlee, Flanders, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
10
|
Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Appl Microbiol Biotechnol 2019; 103:4325-4336. [DOI: 10.1007/s00253-019-09840-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
|
11
|
Abstract
Completion of the whole genome sequence of a laboratory yeast strain Saccharomyces cerevisiae in 1996 ushered in the development of genome-wide experimental tools and accelerated subsequent genetic study of S. cerevisiae. The study of sake yeast also shared the benefit of such tools as DNA microarrays, gene disruption-mutant collections, and others. Moreover, whole genome analysis of representative sake yeast strain Kyokai no. 7 was performed in the late 2000s, and enabled comparative genomics between sake yeast and laboratory yeast, resulting in some notable finding for of sake yeast genetics. Development of next-generation DNA sequencing and bioinformatics also drastically changed the field of the genetics, including for sake yeast. Genomics and the genome-wide study of sake yeast have progressed under these circumstances during the last two decades, and are summarized in this article. Abbreviations: AFLP: amplified fragment length polymorphism; CGH: comparative genomic hybridization; CNV: copy number variation; DMS: dimethyl succinate; DSW: deep sea water; LOH: loss of heterozygosity; NGS: next generation sequencer; QTL: quantitative trait loci; QTN: quantitative trait nucleotide; SAM: S-adenosyl methionine; SNV: single nucleotide variation.
Collapse
Affiliation(s)
- Takeshi Akao
- a National Research Institute of Brewing , Higashi-hiroshima , Japan
| |
Collapse
|
12
|
Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast. Appl Environ Microbiol 2017; 83:AEM.01620-17. [PMID: 28986374 DOI: 10.1128/aem.01620-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/20/2017] [Indexed: 01/02/2023] Open
Abstract
The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast (Saccharomyces cerevisiae) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile.IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of increased mitochondrial activity. This novel discovery will enable the selection of favorable brewery yeasts by monitoring the copy numbers of specific chromosomes through a process that does not involve generation/use of genetically modified organisms.
Collapse
|
13
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Takahashi T, Ohara Y, Sueno K. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. J Biosci Bioeng 2017; 123:707-713. [DOI: 10.1016/j.jbiosc.2017.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
|