1
|
Tong X, Zhang X, Fu J, He R. Mechanisms on nitrogen amendment stimulating methane oxidation in landfill cover soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114893. [PMID: 40373514 DOI: 10.1016/j.wasman.2025.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/22/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Landfill cover soil plays a pivotal role in mitigating CH4 input to the atmosphere. However, the community and activity of methane-oxidizing bacteria (MOB), and their responses to nutrient amendment remain insufficiently understood in landfill cover soils. In this study, the influencing mechanisms of nitrogen amendment on MOB activity, and their functional microorganisms and genes were investigated in landfill cover soils. An exogenous ammonium and nitrate addition could enhance CH4 oxidation activity of 13.9-34.1 times in the landfill cover soil. The NH4+-N addition of 800 mg kg-1 could cause a maximum nitrite accumulation of 41.2 mg kg-1 in the landfill cover soils and inhibit CH4 oxidation. Nitrogen was mainly deposited in the landfill cover soil in the form of organic nitrogen, with a slight loss of 1.47-3.21 % in the treatments amended with ammonium and nitrate at each stage. A high CH4 oxidation could increase the secretion of CH4-derived carbon and improve the organic matter of soil. Compared with ammonium, the nitrate addition had a greater stimulating effect on microbial and MOB growth. Type I MOB predominated in the soils amended with ammonium and nitrate, whereas type II MOB dominated in the nitrogen-deficient soils. Metagenomic analysis showed that the genes related to nitrogen fixation (nifDKH) were more abundant in the nitrogen-deficient soil than the others. These findings suggest that an appropriate ammonium and nitrate addition could induce carbon and nitrogen accumulation, and stimulate microbial metabolism such as CH4 oxidation and element cycles in the landfill cover soils to mitigate CH4 emission.
Collapse
Affiliation(s)
- Xue Tong
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jun Fu
- School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
3
|
Gęsicka A, Gutowska N, Palaniappan S, Oleskowicz-Popiel P, Łężyk M. Enrichment of mixed methanotrophic cultures producing polyhydroxyalkanoates (PHAs) from various environmental sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168844. [PMID: 38029989 DOI: 10.1016/j.scitotenv.2023.168844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Methanotrophic bacteria can use atmospheric methane (CH4) as a sole carbon source for the growth and production of polyhydroxyalkanoates (PHA). The development of CH4 bioconversion processes relies heavily on the selection of an efficient methanotrophic culture. This research assessed the effect of selected growth conditions, such as nitrogen sources on the enrichment of methanotrophic cultures from various environments for PHA accumulation. Nitrate-based medium favoured the culture growth and selection for PHA-producing methanotrophic cultures with Methylocystis sp. as a major genus and accumulation of up to 27 % polyhydroxybutyrate (PHB) in the biomass. Three PHB-producing cultures: enriched from waste activated sludge (AS), peat bog soil (PB) and landfill biocover soil (LB) were then tested for their ability to produce PHA copolymer at different CH4:O2 ratios. All enriched cultures were able to utilise valeric acid as a cosubstrate for the accumulation of PHA with a 3-hydroxyvaleric (3HV) fraction of 21-41 mol% depending on the inoculum source and CH4 concentration. The process performance of selected cultures was evaluated and compared to the culture of reference strain Methylocystis hirsuta DSM 18500. All mixed cultures irrespective of their inoculum source had similar levels of 3HV fraction in the PHA (38 ± 2 mol%). The highest poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production was observed for AS culture at 10 % CH4 with an accumulation of 27 ± 3 % of dry cell weight (DCW), 3HV fraction of 39 ± 2 mol% and yield of 0.42 ± 0.02 g-PHA/g-substrate.
Collapse
Affiliation(s)
- Aleksandra Gęsicka
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Natalia Gutowska
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Sivasankar Palaniappan
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| |
Collapse
|
4
|
Guo W, He R, Zhao Y, Li D. Imbalanced metabolism induced NH 4+ accumulation and its effect on the central metabolism of Methylomonas sp. ZR1. Int Microbiol 2024; 27:49-66. [PMID: 38038804 DOI: 10.1007/s10123-023-00457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 07/23/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Nitrogen and carbon are the two most essential nutrient elements, and their metabolism is tightly coupled in single carbon metabolic microorganisms. However, the nitrogen metabolism and the nitrogen/carbon (N/C) metabolic balance in single-carbon metabolism is poorly studied. In this study, the nitrogen metabolism pattern of the fast growing methanotrophs Methylomonas sp. ZR1 grown in methane and methanol was studied. Effect study of different nitrogen sources on the cell growth of ZR1 indicates that nitrate salts are the best nitrogen source supporting the growth of ZR1 using methane and methanol as carbon source. However, its metabolic intermediate ammonium was found to accumulate with high N/C ratio in the medium and consequently inhibit the growth of ZR1. Studies of carbon and nitrogen metabolic kinetic under different N/C ratio conditions indicate that the accumulation of NH4+ is caused by the imbalanced nitrogen and carbon metabolism in ZR1. Feeding carbon skeleton α-ketoglutaric acid could effectively relieve the inhibition effect of NH4+ on the growth of ZR1, which further confirms this assumption. qPCR analysis of the expression level of the central metabolic key enzyme gene indicates that the nitrogen metabolic intermediate ammonium has strong regulation effect on the central nitrogen and carbon metabolism in ZR1. qPCR-combined genomic analysis confirms that a third ammonium assimilation pathway glycine synthesis system is operated in ZR1 to balance the nitrogen and carbon metabolism. Based on the qPCR result, it was also found that ZR1 employs two strategies to relieve ammonium stress in the presence of ammonium: assimilating excess ammonium or cutting off the nitrogen reduction reactions according to the available C1 substrate. Validating the connections between single-carbon and nitrogen metabolism and studying the accumulation and assimilation mechanism of ammonium will contribute to understand how nitrogen regulates cellular growth in single-carbon metabolic microorganisms.
Collapse
Affiliation(s)
- Wei Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yujie Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Demao Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, 32 West 7Th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
5
|
Yang L, Zhang S, Lv X, Liu Y, Guo S, Hu X, Manirakiza B. Vallisneria natans decreased CH 4 fluxes in wetlands: Interactions among plant physiological status, nutrients and epiphytic bacterial community. ENVIRONMENTAL RESEARCH 2023; 224:115547. [PMID: 36822529 DOI: 10.1016/j.envres.2023.115547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Submerged macrophytes provide niches for epiphytic microbes (including aerobic methanotrophs) growth. However, little is known about the impacts of submerged macrophytes growth status and nutrients loadings on methanotroph community and methane release in wetlands. In the present study, methane fluxes, bacterial and methanotroph community in epiphytic biofilm, and environmental parameters were investigated during Vallisneria natans senescence in wetlands under low (VnL) and high (VnH) nutrients for seven weeks. Relative conductivity and concentration of H2O2, total chlorophyll and malondialdehyde were higher in leaves of V. natans in VnH than VnL at the same sampling time. Nutrients loading increased methane fluxes in treatments with or without (Control) macrophytes, while healthy V. natans plants reduced the methane flux and nutrients concentration in water columns. CH4 fluxes were positively correlated to temperature and COD (p < 0.05). Methane oxidation rates were 3.04-31.68 μmol methane mg-1 fresh weight of V. natans leaves - epiphytic biofilm within 1 h. Proteobacteria, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Actinobacteria and Acidobacteria were dominant phylum in all epiphytic biofilms. The mean abundances of pmoA/16S rRNA were higher in VnL than VnH. According to Illumina sequencing results of pmoA gene, γ-proteobacteria and α-proteobacteria were the dominant methanotroph class in epiphytic biofilm from VnH and VnL, respectively. Among seven detected methanotrophic genera, Methylomonas was significantly higher in VnH than VnL. Network analysis revealed that there were much closer relationships between the environmental parameters and epiphytic bacterial community in VnH than in VnL. COD and MDA were negatively correlated with Methyloglobulus, Methylosarcina, Methylobacter and Methylocystis, but positively correlated with Methylomonas and Methylosinus. This study highlights that methanotrophs in epiphytic biofilm play important roles in methane-oxidizing, which can be affected by plant physiological status and environmental parameters.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuansi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shaozhuang Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Benjamin Manirakiza
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
6
|
Guo K, Hakobyan A, Glatter T, Paczia N, Liesack W. Methylocystis sp. Strain SC2 Acclimatizes to Increasing NH 4+ Levels by a Precise Rebalancing of Enzymes and Osmolyte Composition. mSystems 2022; 7:e0040322. [PMID: 36154142 PMCID: PMC9600857 DOI: 10.1128/msystems.00403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Hakobyan
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
7
|
Ma RC, Chu YX, Wang J, Wang C, Leigh MB, Chen Y, He R. Stable-isotopic and metagenomic analyses reveal metabolic and microbial link of aerobic methane oxidation coupled to denitrification at different O 2 levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142901. [PMID: 33757249 DOI: 10.1016/j.scitotenv.2020.142901] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) can not only mitigate CH4 emission into the atmosphere, but also potentially alleviate nitrogen pollution in surface waters and engineered ecosystems, and it has attracted substantial research interest. O2 concentration plays a key role in AME-D, yet little is understood about how it impacts microbial interactions. Here, we applied isotopically labeled K15NO3 and 13CH4 and metagenomic analyses to investigate the metabolic and microbial link of AME-D at different O2 levels. Among the four experimental O2 levels of 21%,10%, 5% and 2.5% and a CH4 concentration of 8% (i.e., the O2/CH4 ratios of 2.62, 1.26, 0.63 and 0.31), the highest NO3--N removal occurred in the AME-D system incubated at the O2 concentration of 10%. Methanol and acetate may serve as the trophic linkage between aerobic methanotrophs and denitrifers in the AME-D systems. Methylotrophs including Methylophilus, Methylovorus, Methyloversatilis and Methylotenera were abundant under the O2-sufficient condition with the O2 concentration of 21%, while denitrifiers such as Azoarcus, Thauera and Thiobacillus dominated in the O2-limited environment with the O2 concentration of 10%. The competition of denitrifiers and methylotrophs in the AME-D system for CH4-derived carbon, such as methanol and acetate, might be influenced by chemotactic responses. More methane-derived carbon flowed into methylotrophs under the O2-sufficient condition, while more methane-derived carbon was used for denitrification in the O2-limited environment. These findings can aid in evaluating the distribution and contribution of AME-D and in developing strategies for mitigating CH4 emission and nitrogen pollution in natural and engineered ecosystems.
Collapse
Affiliation(s)
- Ruo-Chan Ma
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Cheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Hu Y, Jiang H, Wang F, Xu Z, Chen Y, Ma S, Yan Y, Lu X. Opposite responses of global warming potential to ammonium and nitrate addition in an alpine steppe soil from Northern Tibet. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
9
|
Broman E, Sun X, Stranne C, Salgado MG, Bonaglia S, Geibel M, Jakobsson M, Norkko A, Humborg C, Nascimento FJA. Low Abundance of Methanotrophs in Sediments of Shallow Boreal Coastal Zones With High Water Methane Concentrations. Front Microbiol 2020; 11:1536. [PMID: 32733420 PMCID: PMC7362727 DOI: 10.3389/fmicb.2020.01536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
Coastal zones are transitional areas between land and sea where large amounts of organic and inorganic carbon compounds are recycled by microbes. Especially shallow zones near land have been shown to be the main source for oceanic methane (CH4) emissions. Water depth has been predicted as the best explanatory variable, which is related to CH4 ebullition, but exactly how sediment methanotrophs mediates these emissions along water depth is unknown. Here, we investigated the relative abundance and RNA transcripts attributed to methane oxidation proteins of aerobic methanotrophs in the sediment of shallow coastal zones with high CH4 concentrations within a depth gradient from 10-45 m. Field sampling consisted of collecting sediment (top 0-2 cm layer) from eight stations along this depth gradient in the coastal Baltic Sea. The relative abundance and RNA transcripts attributed to the CH4 oxidizing protein (pMMO; particulate methane monooxygenase) of the dominant methanotroph Methylococcales was significantly higher in deeper costal offshore areas (36-45 m water depth) compared to adjacent shallow zones (10-28 m). This was in accordance with the shallow zones having higher CH4 concentrations in the surface water, as well as more CH4 seeps from the sediment. Furthermore, our findings indicate that the low prevalence of Methylococcales and RNA transcripts attributed to pMMO was restrained to the euphotic zone (indicated by Photosynthetically active radiation (PAR) data, photosynthesis proteins, and 18S rRNA data of benthic diatoms). This was also indicated by a positive relationship between water depth and the relative abundance of Methylococcales and pMMO. How these processes are affected by light availability requires further studies. CH4 ebullition potentially bypasses aerobic methanotrophs in shallow coastal areas, reducing CH4 availability and limiting their growth. Such mechanism could help explain their reduced relative abundance and related RNA transcripts for pMMO. These findings can partly explain the difference in CH4 concentrations between shallow and deep coastal areas, and the relationship between CH4 concentrations and water depth.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Xiaole Sun
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Christian Stranne
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Marco G. Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Marc Geibel
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Martin Jakobsson
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Christoph Humborg
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
López JC, Porca E, Collins G, Clifford E, Quijano G, Muñoz R. Ammonium influences kinetics and structure of methanotrophic consortia. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:345-353. [PMID: 31079748 DOI: 10.1016/j.wasman.2019.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The literature is conflicted on the influence of ammonium on the kinetics and microbial ecology of methanotrophy. In this study, methanotrophic cultures were enriched, under ammonium concentrations ranging from 0 to 200 mM, from an inoculum comprising leachate and top-cover soil from a landfill. Specific CH4 biodegradation rates were highest (7.8 × 10-4 ± 6.0 × 10-5 gCH4 gX-1 h-1) in cultures enriched at 4 mM NH4+, which were mainly dominated by type II methanotrophs belonging to Methylocystis spp. Lower specific CH4 oxidation rates (average values of 1.8-3.6 × 10-4 gCH4 gX-1 h-1) were achieved by cultures enriched at higher NH4+ concentrations (20 and 80 mM), and had higher affinity for CH4 compared to 4 mM enrichments. These lower affinities were attributed to lower diversity dominated by type I methanotrophs, of the Methylosarcina, Methylobacter and Methylomicrobium genera, encountered with increasing concentrations of NH4+. The study indicates that CH4 oxidation biotechnologies applied at low NH4+ concentrations can support efficient abatement of CH4 and high diversity of methanotrophic consortia, whilst enriching type II methanotrophs.
Collapse
Affiliation(s)
- Juan C López
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Estefanía Porca
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Eoghan Clifford
- Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 F677, Ireland
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Proceses, University of Valladolid, Spain.
| |
Collapse
|
11
|
Yan L, Mu X, Han B, Zhang S, Qiu C, Ohore OE. Ammonium loading disturbed the microbial food webs in biofilms attached to submersed macrophyte Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:691-698. [PMID: 31096399 DOI: 10.1016/j.scitotenv.2018.12.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The knowledge about the impacts of ammonium loading on microbial food webs in biofilms attached to submersed macrophytes is limited. In the present study, Illumina sequencing method was employed to investigate bacterial and eukaryotic communities in biofilms attached to leaves of Vallisneria natans (V. natans) exposed to 1-16 mg L-1 NH4+-N for 10 days, and 8 mg L-1 NH4+-N for 21 days. Ammonium loading stimulated biofilms growth, enhanced the relative abundance of nitrifying genus Nitrospira and several denitrifying genera. Eukaryotic kingdom Metazoa, Viridiplantae, Chromista, Fungi and super group SARNU (Stramenopiles, Alveolata, Rhizaria, Nucleariidae and Fonticula group and unknown eukaryotes) were obtained. Relative abundance of Metazoa decreased with the increased ammonium concentration and exposure time. Redundancy analysis revealed that ammonium, dissolved oxygen (DO) and pH had a key role in determining microbial community structure. Network analyses revealed that there were complex interactions including feeding, parasitism and predatism among organism in biofilms, and the microbial food webs were disturbed by inhibiting metazoan growth but stimulating bacteria and algae growth. These results suggest that ammonium-disturbed microbial food webs in biofilms may contribute to the growth of biofilms and algae, and thus contribute to the decline of submersed macrophyte and provide "algal seeds" for the algae burst in water column. These data will be helpful in understanding the macrophytic region transform into algal region in water column polluted by ammonium.
Collapse
Affiliation(s)
- Lingling Yan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Changhao Qiu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Okugbe E Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
13
|
He R, Ma RC, Yao XZ, Wei XM. Response of methanotrophic activity to extracellular polymeric substance production and its influencing factors. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:289-297. [PMID: 28803765 DOI: 10.1016/j.wasman.2017.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/25/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The accumulation of extracellular polymeric substance (EPS) is speculated to be related with the decrease of CH4 oxidation rate after a peak in long-term laboratory landfill covers and biofilters. However, few data have been reported about EPS production of methanotrophs and its feedback effects on methanotrophic activity. In this study, Methylosinus sporium was used asa model methanotroph to investigate EPS production and its influencing factors during CH4 oxidation. The results showed that methanotrophs could secret EPS into the habits during CH4 oxidation and had a negative feedback effect on CH4 oxidation. The EPS amount fitted well with the CH4 oxidation activity with the exponential model. The environmental factors such as pH, temperature, CH4, O2, NO3--N and NH4+-N could affect the EPS production of methanotrophs. When pH, temperature, CH4, O2 and N concentrations (including NO3--N and NH4+-N) were 6.5-7.5, 30-40°C, 10-15%, 10% and 20-140mgL-1, respectively, the high cell growth rate and CH4 oxidation activity of Methylosinus sporium occurred in the media with the low EPS production, which was beneficial to sustainable and efficient CH4 oxidation. In practice, O2-limited condition such as the O2 concentration of 10% might be a good way to control EPS production and enhance CH4 oxidation to mitigate CH4 emission from landfills.
Collapse
Affiliation(s)
- Ruo He
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ruo-Chan Ma
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing-Zhi Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Meng Wei
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Mohammadi SS, Pol A, van Alen T, Jetten MSM, Op den Camp HJM. Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV. Front Microbiol 2017; 8:1901. [PMID: 29021790 PMCID: PMC5623727 DOI: 10.3389/fmicb.2017.01901] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/15/2017] [Indexed: 01/12/2023] Open
Abstract
The Solfatara volcano near Naples (Italy), the origin of the recently discovered verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was shown to contain ammonium ([Formula: see text]) at concentrations ranging from 1 to 28 mM. Ammonia (NH3) can be converted to toxic hydroxylamine (NH2OH) by the particulate methane monooxygenase (pMMO), the first enzyme of the methane (CH4) oxidation pathway. Methanotrophs rapidly detoxify the intermediate NH2OH. Here, we show that strain SolV performs ammonium oxidation to nitrite at a rate of 48.2 nmol [Formula: see text].h-1.mg DW-1 under O2 limitation in a continuous culture grown on hydrogen (H2) as an electron donor. In addition, strain SolV carries out nitrite reduction at a rate of 74.4 nmol [Formula: see text].h-1.mg DW-1 under anoxic condition at pH 5-6. This range of pH was selected to minimize the chemical conversion of nitrite ([Formula: see text]) potentially occurring at more acidic pH values. Furthermore, at pH 6, we showed that the affinity constants (K s ) of the cells for NH3 vary from 5 to 270 μM in the batch incubations with 0.5-8% (v/v) CH4, respectively. Detailed kinetic analysis showed competitive substrate inhibition between CH4 and NH3. Using transcriptome analysis, we showed up-regulation of the gene encoding hydroxylamine dehydrogenase (haoA) cells grown on H2/[Formula: see text] compared to the cells grown on CH4/[Formula: see text] which do not have to cope with reactive N-compounds. The denitrifying genes nirk and norC showed high expression in H2/[Formula: see text] and CH4/[Formula: see text] grown cells compared to cells growing at μmax (with no limitation) while the norB gene showed downregulation in CH4/[Formula: see text] grown cells. These cells showed a strong upregulation of the genes in nitrate/nitrite assimilation. Our results demonstrate that strain SolV can perform ammonium oxidation producing nitrite. At high concentrations of ammonium this may results in toxic effects. However, at low oxygen concentrations strain SolV is able to reduce nitrite to N2O to cope with this toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Huub J. M. Op den Camp
- Department of Microbiology, Faculty of Science, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|