1
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Mao L, Schneider JW, Robinson AS. Rosmarinic acid enhances CHO cell productivity and proliferation through activation of the unfolded protein response and the mTOR pathway. Biotechnol J 2024; 19:e2300397. [PMID: 37897814 DOI: 10.1002/biot.202300397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Rosmarinic acid (RA) has gained attraction in bioprocessing as a media supplement to improve cellular proliferation and protein production. Here, we observe up to a two-fold increase in antibody production with RA-supplementation, and a concentration-dependent effect of RA on cell proliferation for fed-batch Chinese hamster ovary (CHO) cell cultures. Contrary to previously reported antioxidant activity, RA increased the reactive oxygen species (ROS) levels, stimulated endoplasmic reticulum (ER) stress, activated the unfolded protein response (UPR), and elicited DNA damage. Despite such stressful events, RA appeared to maintained cell health via mammalian target of rapamycin (mTOR) pathway activation; both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) were stimulated in RA-supplemented cultures. By reversing such mTOR pathway activity through either chemical inhibitor addition or siRNA knockdown of genes regulating the mTORC1 and mTORC2 complexes, antibody production, UPR signaling, and stress-induced DNA damage were reduced. Further, the proliferative effect of RA appeared to be regulated selectively by mTORC2 activation and have reproduced this observation by using the mTORC2 stimulator SC-79. Analogously, knockdown of mTORC2 strongly reduced X-box binding protein 1 (XBP1) splicing, which would be expected to reduce antibody folding and secretion, sugging that reduced mTORC2 would correlate with reduced antibody levels. The crosstalk between mTOR activation and UPR upregulation may thus be related directly to the enhanced productivity. Our results show the importance of the mTOR and UPR pathways in increasing antibody productivity, and suggest that RA supplementation may obviate the need for labor-intensive genetic engineering by directly activating pathways favorable to cell culture performance.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Li R, Xin B, Wang Q, Wang Z, Fu H, Yan Z, Zhu Y. Combined effect of unfolded protein response and circZc3h4, circRNA Scar in mouse ovary and uterus damage induced by procymidone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113068. [PMID: 34902777 DOI: 10.1016/j.ecoenv.2021.113068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Procymidone (PCM) is a fungicide commonly used to prevent and control plant diseases, and it is also an environmental endocrine disruptor that has a typical anti-androgen effect on the function and/or structure of the vertebrate reproductive system. The activation of the unfolded protein response (UPR) will fold the protein correctly to ensure the cell's survival. PCM regulates GRP78 by affecting the level of hormones, and there is a regulatory relationship between the UPR, the circRNAs and the miRNAs. In vivo experiments, PCM (suspended in soybean oil) was orally administered to adolescent female mice for 21 days in 3 different doses of 50 mg kg-1 day-1 (low dose), 100 mg kg-1 day-1 (medium dose) and 200 mg kg-1 day-1 (high dose) to cause ovaries and uteruses damage, and in vitro experiments, various doses of PCM from 0.33 × 10-5 (low dose) to 1 × 10-5 (medium dose) then 3 × 10-5 M (high dose) were used to induce injury on the ovaries and uteri of the mice. We found out that both in vivo and in vitro, PCM caused dose-dependent damages to the ovaries and uteri, increased their circRNA Scar levels and decreased circZc3h4 abundance. Also, all UPR signaling pathways in the low-dose group and some in the middle-dose group were activated. It is speculated that UPR may antagonize the partial ovarian and uterine damage in adolescent mice induced by PCM at doses less than NOAEL via changes in circZc3h4 and circRNA Scar.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Bingyan Xin
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Qing Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Zhen Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, China; Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha 410081, China; Department of Preventive Medicine, Medical School, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
4
|
An J, Zhang X, Jia K, Zhang C, Zhu L, Cheng M, Li F, Zhao S, Hao J. Trichostatin A increases BDNF protein expression by improving XBP-1s/ATF6/GRP78 axis in Schwann cells of diabetic peripheral neuropathy. Biomed Pharmacother 2021; 133:111062. [PMID: 33378965 DOI: 10.1016/j.biopha.2020.111062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the common complication of diabetes mellitus. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) is reported to ameliorate the peripheral nerves degeneration of DPN. However, the exact mechanism is still not well elucidated. Here, we first revealed that TSA promoted nerve conduction and brain derived neurotrophic factor (BDNF) expression in the sciatic nerves of diabetic mice. In line, TSA also reversed high glucose-reduced mature BDNF expression in vitro cultured rat Schwann cells (RSC96). Then unexpectedly, the downstream targets of TSA HDAC1 and HDAC5 were not involved in TSA-improved BDNF expression. Furthermore, unfolded protein response (UPR) chaperone GRP78 was revealed to be downregulated with high glucose stimulation in RSC96 cells, which was avoided with TSA treatment. Also, GRP78 upregulation mediated TSA-improved mature BDNF expression in high glucose-cultured RSC96 cells by binding with BDNF. As well, TSA treatment enhanced the binding of GRP78 with BDNF in RSC96 cells. Again, UPR-associated transcription factors XBP-1s and ATF6 were involved in TSA-increased GRP78 expression in high glucose-stimulated RSC96 cells. Finally, conditioned medium from high glucose-cultured RSC96 cells delayed neuron SH-SY5Y differentiation and that from TSA-treated high glucose-cultured RSC96 cells promoted SH-SY5Y cell differentiation. Taken together, our findings suggested that TSA increased BDNF expression to ameliorate DPN by improving XBP-1s/ATF6/GRP78 axis in Schwann cells.
Collapse
Affiliation(s)
- Jiahui An
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Cuihong Zhang
- Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
5
|
Chandrawanshi V, Kulkarni R, Prabhu A, Mehra S. Enhancing titers and productivity of rCHO clones with a combination of an optimized fed-batch process and ER-stress adaptation. J Biotechnol 2020; 311:49-58. [PMID: 32070675 DOI: 10.1016/j.jbiotec.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/01/2023]
Abstract
To increase the productivity of rCHO cells, many cell engineering approaches have been demonstrated that over-express or knockout a specific gene to achieve increased titers. In this work, we present an alternate approach, based on the concept of evolutionary adaptation, to achieve cells with higher titers. rCHO cells, producing a monoclonal antibody, are adapted to ER-stress, by continuous culturing under increasing concentration of tunicamycin. A sustained higher productivity of at-least 2-fold was achieved in all the clones, in a concentration-dependent manner. Similarly, a 1.5-2 fold increase in final titers was also achieved in the batch culture. Based on metabolic analysis of the adapted cells, a fed-batch process was designed where significantly higher titersare achieved as compared to control. Metabolic flux analysis is employed in addition with gene expression analysis of key genes to understand the basis of increased performance of the adapted cells. Overall, this work illustrates how process modifications and cellular adaptation can be used in synergy to drive up product titers.
Collapse
Affiliation(s)
- Vikas Chandrawanshi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohan Kulkarni
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Anuja Prabhu
- CSIR-National Chemical Laboratory, Pune, India; Academyof Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarika Mehra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India; Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
6
|
Lobner E, Wachernig A, Gudipati V, Mayrhofer P, Salzer B, Lehner M, Huppa JB, Kunert R. Getting CD19 Into Shape: Expression of Natively Folded "Difficult-to- Express" CD19 for Staining and Stimulation of CAR-T Cells. Front Bioeng Biotechnol 2020; 8:49. [PMID: 32117929 PMCID: PMC7020774 DOI: 10.3389/fbioe.2020.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.
Collapse
Affiliation(s)
- Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anna Wachernig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
7
|
Torres S, Baulies A, Insausti-Urkia N, Alarcón-Vila C, Fucho R, Solsona-Vilarrasa E, Núñez S, Robles D, Ribas V, Wakefield L, Grompe M, Lucena MI, Andrade RJ, Win S, Aung TA, Kaplowitz N, García-Ruiz C, Fernández-Checa JC. Endoplasmic Reticulum Stress-Induced Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver Failure. Gastroenterology 2019; 157:552-568. [PMID: 31029706 DOI: 10.1053/j.gastro.2019.04.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) overdose is a major cause of acute liver failure (ALF). Mitochondrial SH3BP5 (also called SAB) and phosphorylation of c-Jun N-terminal kinase (JNK) mediate the hepatotoxic effects of APAP. We investigated the involvement of steroidogenic acute regulatory protein (STARD1), a mitochondrial cholesterol transporter, in this process and sensitization by valproic acid (VPA), which depletes glutathione and stimulates steroidogenesis. METHODS Nonfasted C57BL/6J mice (control) and mice with liver-specific deletion of STARD1 (Stard1ΔHep), SAB (SabΔHep), or JNK1 and JNK2 (Jnk1+2ΔHep) were given VPA with or without APAP. Liver tissues were collected and analyzed by histology and immunohistochemistry and for APAP metabolism, endoplasmic reticulum (ER) stress, and mitochondrial function. Adult human hepatocytes were transplanted into Fah-/-/Rag2-/-/Il2rg-/-/NOD (FRGN) mice to create mice with humanized livers. RESULTS Administration of VPA before administration of APAP increased the severity of liver damage in control mice. The combination of VPA and APAP increased expression of CYP2E1, formation of NAPQI-protein adducts, and depletion of glutathione from liver tissues of control mice, resulting in ER stress and the upregulation of STARD1. Livers from control mice given VPA and APAP accumulated cholesterol in the mitochondria and had sustained mitochondrial depletion of glutathione and mitochondrial dysfunction. Inhibition of ER stress, by administration of tauroursodeoxycholic acid to control mice, prevented upregulation of STARD1 in liver and protected the mice from hepatoxicity following administration of VPA and APAP. Administration of N-acetylcysteine to control mice prevented VPA- and APAP-induced ER stress and liver injury. Stard1ΔHep mice were resistant to induction of ALF by VPA and APAP, despite increased mitochondrial levels of glutathione and phosphorylated JNK; we made similar observations in fasted Stard1ΔHep mice given APAP alone. SabΔHep mice or Jnk1+2ΔHep mice did not develop ALF following administration of VPA and APAP. The ability of VPA to increase the severity of APAP-induced liver damage was observed in FRGN mice with humanized liver. CONCLUSIONS In studies of mice, we found that upregulation of STARD1 following ER stress mediates APAP hepatoxicity via SH3BP5 and phosphorylation of JNK1 and JNK2.
Collapse
Affiliation(s)
- Sandra Torres
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Anna Baulies
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Naroa Insausti-Urkia
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Cristina Alarcón-Vila
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Susana Núñez
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - David Robles
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | - Vicent Ribas
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain
| | | | - Markus Grompe
- Oregon Health and Science University, Portland, Oregon
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, CIBEREHD, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, CIBEREHD, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Sanda Win
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Tin A Aung
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, USC Keck School of Medicine, Los Angeles, California
| | - Carmen García-Ruiz
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California
| | - Jose C Fernández-Checa
- Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain; Liver Unit, Hospital Cínic, IDIBAPS and CIBEREHD, Barcelona, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
8
|
Carlsten M, Namazi A, Reger R, Levy E, Berg M, St Hilaire C, Childs RW. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. Oncoimmunology 2018; 8:e1534664. [PMID: 30713790 PMCID: PMC6343814 DOI: 10.1080/2162402x.2018.1534664] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/16/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Although the proteasome inhibitor bortezomib has significantly improved the survival of patients with multiple myeloma (MM), the disease remains fatal as most patients eventually develop progressive disease. Recent data indicate that MM cells can evade bortezomib-induced cell death by undergoing autophagy as a consequence of endoplasmatic reticulum (ER)-stress induced by proteasome inhibition. Here we show that bortezomib sensitizes MM cells to NK cell killing via two distinct mechanisms: a) upregulation of the TRAIL death receptor DR5 on the surface of MM cells and b) ER-stress induced reduction of cell surface HLA-E. The latter mechanism is completely novel and was found to be exclusively controlled by the inhibitory receptor NKG2A, with NKG2A single-positive (NKG2ASP) NK cells developing a selective augmentation in tumor killing as a consequence of bortezomib-induced loss of HLA-E on the non-apoptotic MM cells. In contrast, the expression of classical HLA class I molecules remained unchanged following bortezomib exposure, diminishing the augmentation of MM killing by NK cells expressing KIR. Further, we found that feeder cell-based ex vivo expansion of NK cells increased both NK cell TRAIL surface expression and the percentage of NKG2ASP NK cells compared to unexpanded controls, substantially augmenting their capacity to kill bortezomib-treated MM cells. Based on these findings, we hypothesize that infusion of ex vivo expanded NK cells following treatment with bortezomib could eradicate MM cells that would normally evade killing through proteasome inhibition alone, potentially improving long-term survival among MM patients.
Collapse
Affiliation(s)
- Mattias Carlsten
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Ali Namazi
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Robert Reger
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Emily Levy
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Maria Berg
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Cynthia St Hilaire
- Laboratory of Cardiovascular Regenerative Medicine, Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Richard W Childs
- Laboratory of Transplantation Immunotherapy, Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
9
|
Debottlenecking protein secretion and reducing protein aggregation in the cellular host. Curr Opin Biotechnol 2018; 53:151-157. [DOI: 10.1016/j.copbio.2018.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/05/2023]
|
10
|
Tung M, Tang D, Wang SH, Zhan D, Kiplinger K, Pan S, Jing Y, Shen A, Ahyow P, Snedecor B, Gawlitzek M, Misaghi S. High Intracellular Seed Train BiP Levels Correlate With Poor Production Culture Performance in CHO Cells. Biotechnol J 2018; 13:e1700746. [PMID: 29635750 DOI: 10.1002/biot.201700746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/28/2018] [Indexed: 12/31/2022]
Abstract
Consistent cell culture performance is a prerequisite to ensure product quality consistency and achieve productivity goals for the manufacture of recombinant protein therapeutics, including monoclonal antibodies. Here a peculiar observation is reported where high levels of intracellular BiP in seed train cultures are consistently predictive of poor cell culture performance in the subsequent inoculum and production cultures for a monoclonal antibody produced in CHO cells. This investigation suggests that in this cell line the high intracellular BiP levels in the seed train are triggered by a slightly lower culture pH, which interferes with proper antibody folding and secretion. While the seed train culture does not display any obvious signs of the problem at slightly lower culture pH, inoculum trains, and production cultures sourced from these low pH seed trains display significantly lower cell growth and cell size. High intracellular BiP levels may interfere with UPR signaling, thereby hampering a proper and timely UPR response in the production media. Studies of other problematic cell lines have shown a similar correlation between intracellular BiP accumulation and poor production performance. The authors believe intracellular BiP levels in seed train should hence be low in order to increase the success rate in production.
Collapse
Affiliation(s)
- Meg Tung
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Danming Tang
- Department of Early Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Szu-Han Wang
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Dejin Zhan
- Department of Early Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Karen Kiplinger
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Shu Pan
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Yifeng Jing
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Amy Shen
- Department of Early Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Patrick Ahyow
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Brad Snedecor
- Department of Early Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Martin Gawlitzek
- Department of Late Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Shahram Misaghi
- Department of Early Stage Cell Culture, Genentech, Inc., South San Francisco, CA, 94080, USA
| |
Collapse
|