1
|
Goto S, Miyahara Y, Taguchi S, Tsuge T, Hiroe A. Enhanced Production of (R)-3-Hydroxybutyrate Oligomers by Coexpression of Molecular Chaperones in Recombinant Escherichia coli Harboring a Polyhydroxyalkanoate Synthase Derived from Bacillus cereus YB-4. Microorganisms 2022; 10:microorganisms10020458. [PMID: 35208913 PMCID: PMC8878867 DOI: 10.3390/microorganisms10020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022] Open
Abstract
The biodegradable polyester poly-(R)-3-hydroxybutyrate [P(3HB)] is synthesized by a polymerizing enzyme called polyhydroxyalkanoate (PHA) synthase and accumulates in a wide variety of bacterial cells. Recently, we demonstrated the secretory production of a (R)-3HB oligomer (3HBO), a low-molecular-weight P(3HB), by using recombinant Escherichia coli expressing PHA synthases. The 3HBO has potential value as an antibacterial substance and as a building block for various polymers. In this study, to construct an efficient 3HBO production system, the coexpression of molecular chaperones and a PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4) was examined. First, genes encoding enzymes related to 3HBO biosynthesis (phaRCYB4, phaA and phaB derived from Ralstonia eutropha H16) and two types of molecular chaperones (groEL, groES, and tig) were introduced into the E. coli strains BW25113 and BW25113ΔadhE. As a result, coexpression of the chaperones promoted the enzyme activity of PHA synthase (approximately 2–3-fold) and 3HBO production (approximately 2-fold). The expression assay of each chaperone and PHA synthase subunit (PhaRYB4 and PhaCYB4) indicated that the combination of the two chaperone systems (GroEL-GroES and TF) supported the folding of PhaRYB4 and PhaCYB4. These results suggest that the utilization of chaperone proteins is a valuable approach to enhance the formation of active PHA synthase and the productivity of 3HBO.
Collapse
Affiliation(s)
- Saki Goto
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
| | - Yuki Miyahara
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
| | - Takeharu Tsuge
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; (S.G.); (S.T.)
- MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; (Y.M.); (T.T.)
- Correspondence:
| |
Collapse
|
2
|
Mizuno S, Sakurai T, Nabasama M, Kawakami K, Hiroe A, Taguchi S, Tsuge T. The influence of medium composition on the microbial secretory production of hydroxyalkanoate oligomers. J GEN APPL MICROBIOL 2021; 67:134-141. [PMID: 33952784 DOI: 10.2323/jgam.2020.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the aid of a chain transfer (CT) reaction, hydroxyalkanoate (HA) oligomers can be secreted by recombinant Escherichia coli carrying the gene encoding a lactate-polymerizing enzyme (PhaC1PsSTQK) using Luria-Bertani (LB) medium supplemented with a carbon source and CT agent. In this study, HA oligomers were produced through microbial secretion using a mineral-based medium instead of LB medium, and the impact of medium composition on HA oligomer secretion was investigated. The focused targets were medium composition and NaCl concentration related to osmotic conditions. It was observed that 4.21 g/L HA oligomer was secreted by recombinant E. coli in LB medium, but the amount secreted in the mineral-based modified R (MR) medium was negligible. However, when the MR medium was supplemented with 5 g/L yeast extract, 3.75 g/L HA oligomer was secreted. This can be accounted for by the enhanced expression and activity of PhaC1PsSTQK upon supplementation with growth-activated nutrients as supplementation with yeast extract also promoted cell growth and intracellular growth-associated polymer accumulation. Furthermore, upon adding 10 g/L NaCl to the yeast extract-supplemented MR medium, HA oligomer secretion increased to 6.86 g/L, implying that NaCl-induced osmotic pressure promotes HA oligomer secretion. These findings may facilitate the secretory production of HA oligomers using an inexpensive medium.
Collapse
Affiliation(s)
- Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| | - Tetsuo Sakurai
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Mikito Nabasama
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Kyouhei Kawakami
- Department of Materials Science and Engineering, Tokyo Institute of Technology
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture.,MIRAI, JST
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology.,MIRAI, JST
| |
Collapse
|
3
|
Nduko JM, Taguchi S. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Front Bioeng Biotechnol 2021; 8:618077. [PMID: 33614605 PMCID: PMC7889595 DOI: 10.3389/fbioe.2020.618077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are naturally occurring biopolymers produced by microorganisms. PHAs have become attractive research biomaterials in the past few decades owing to their extensive potential industrial applications, especially as sustainable alternatives to the fossil fuel feedstock-derived products such as plastics. Among the biopolymers are the bioplastics and oligomers produced from the fermentation of renewable plant biomass. Bioplastics are intracellularly accumulated by microorganisms as carbon and energy reserves. The bioplastics, however, can also be produced through a biochemistry process that combines fermentative secretory production of monomers and/or oligomers and chemical synthesis to generate a repertoire of biopolymers. PHAs are particularly biodegradable and biocompatible, making them a part of today's commercial polymer industry. Their physicochemical properties that are similar to those of petrochemical-based plastics render them potential renewable plastic replacements. The design of efficient tractable processes using renewable biomass holds key to enhance their usage and adoption. In 2008, a lactate-polymerizing enzyme was developed to create new category of polyester, lactic acid (LA)-based polymer and related polymers. This review aims to introduce different strategies including metabolic and enzyme engineering to produce LA-based biopolymers and related oligomers that can act as precursors for catalytic synthesis of polylactic acid. As the cost of PHA production is prohibitive, the review emphasizes attempts to use the inexpensive plant biomass as substrates for LA-based polymer and oligomer production. Future prospects and challenges in LA-based polymer and oligomer production are also highlighted.
Collapse
Affiliation(s)
- John Masani Nduko
- Department of Dairy and Food Science and Technology, Faculty of Agriculture, Egerton University, Egerton, Kenya
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
4
|
Hiroe A, Sakurai T, Mizuno S, Miyahara Y, Goto S, Yamada M, Tsuge T, Taguchi S. Microbial oversecretion of (R)-3-hydroxybutyrate oligomer with diethylene glycol terminal as a macromonomer for polyurethane synthesis. Int J Biol Macromol 2020; 167:1290-1296. [PMID: 33202278 DOI: 10.1016/j.ijbiomac.2020.11.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 11/28/2022]
Abstract
Poly((R)-3-hydroxybutyrate) (P(3HB)) is a polyester that is synthesized and accumulated in many prokaryotic cells. Recently, a new culture method for the secretion of the intracellularly synthesized (R)-3-hydroxybutyrate oligomer (3HBO) from recombinant Escherichia coli cells was developed. In this study, we attempted to produce microbial 3HBO capped with a diethylene glycol terminal (3HBO-DEG) as a macromonomer for polymeric materials. First, we prepared recombinant E. coli strains harboring genes encoding various polyhydroxyalkanoate (PHA) synthases (PhaC, PhaEC or PhaRC) that can incorporate chain transfer (CT) agents such as DEG into the polymer's terminal and generate CT end-capped oligomers. To this end, each strain was cultivated under DEG supplemental conditions, and the synthesis of 3HBO-DEG was confirmed. As a result, the highest secretory production of 3HBO-DEG was observed for the PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4). To evaluate the usability of the secreted 3HBO-DEG as a macromonomer, 3HBO-DEG was purified from the culture medium and polymerized with 4,4'-diphenylmethane diisocyanate as a spacer compound. Characterization of the polymeric products revealed that 3HBO-based polyurethane was successfully obtained and was a flexible and transparent noncrystalline polymer, unlike P(3HB). These results suggested that microbial 3HBO-DEG is a promising platform building block for synthesizing polyurethane and various other polymers.
Collapse
Affiliation(s)
- Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Sakurai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Miyahara
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Saki Goto
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mariko Yamada
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; MIRAI, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan.
| |
Collapse
|
6
|
Miyahara Y, Hiroe A, Tsuge T, Taguchi S. Microbial Secretion Platform for 3‐Hydroxybutyrate Oligomer and Its End‐Capped Forms Using Chain Transfer Reaction‐Mediated Polyhydroxyalkanoate Synthases. Biotechnol J 2019; 14:e1900201. [DOI: 10.1002/biot.201900201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/27/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yuki Miyahara
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences Tokyo University of Agriculture 1‐1‐1 Sakuragaoka, Setagaya Tokyo 156–8502 Japan
- MIRAI, JST 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Ayaka Hiroe
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences Tokyo University of Agriculture 1‐1‐1 Sakuragaoka, Setagaya Tokyo 156–8502 Japan
- MIRAI, JST 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Major in Human Centered Science and Biomedical Engineering School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 J2‐47 Nagatsuta‐cho, Midori‐ku Yokohama‐shi Kanagawa 226–8502 Japan
- MIRAI, JST 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Seiichi Taguchi
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences Tokyo University of Agriculture 1‐1‐1 Sakuragaoka, Setagaya Tokyo 156–8502 Japan
- CREST, JST 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| |
Collapse
|