1
|
Aguiló-Nicolau P, Iñiguez C, Capó-Bauçà S, Galmés J. Rubisco kinetic adaptations to extreme environments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2599-2608. [PMID: 39080917 DOI: 10.1111/tpj.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
Photosynthetic and chemosynthetic extremophiles have evolved adaptations to thrive in challenging environments by finely adjusting their metabolic pathways through evolutionary processes. A prime adaptation target to allow autotrophy in extreme conditions is the enzyme Rubisco, which plays a central role in the conversion of inorganic to organic carbon. Here, we present an extensive compilation of Rubisco kinetic traits from a wide range of species of bacteria, archaea, algae, and plants, sorted by phylogenetic group, Rubisco type, and extremophile type. Our results show that Rubisco kinetics for the few extremophile organisms reported up to date are placed at the margins of the enzyme's natural variability. Form ID Rubisco from thermoacidophile rhodophytes and form IB Rubisco from halophile terrestrial plants exhibit higher specificity and affinity for CO2 than their non-extremophilic counterparts, as well as higher carboxylation efficiency, whereas form ID Rubisco from psychrophile organisms possess lower affinity for O2. Additionally, form IB Rubisco from thermophile cyanobacteria shows enhanced CO2 specificity when compared to form IB non-extremophilic cyanobacteria. Overall, these findings highlight the unique characteristics of extremophile Rubisco enzymes and provide useful clues to guide next explorations aimed at finding more efficient Rubiscos.
Collapse
Affiliation(s)
- Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
2
|
Hudson EP. The Calvin Benson cycle in bacteria: New insights from systems biology. Semin Cell Dev Biol 2024; 155:71-83. [PMID: 37002131 DOI: 10.1016/j.semcdb.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
The Calvin Benson cycle in phototrophic and chemolithoautotrophic bacteria has ecological and biotechnological importance, which has motivated study of its regulation. I review recent advances in our understanding of how the Calvin Benson cycle is regulated in bacteria and the technologies used to elucidate regulation and modify it, and highlight differences between and photoautotrophic and chemolithoautotrophic models. Systems biology studies have shown that in oxygenic phototrophic bacteria, Calvin Benson cycle enzymes are extensively regulated at post-transcriptional and post-translational levels, with multiple enzyme activities connected to cellular redox status through thioredoxin. In chemolithoautotrophic bacteria, regulation is primarily at the transcriptional level, with effector metabolites transducing cell status, though new methods should now allow facile, proteome-wide exploration of biochemical regulation in these models. A biotechnological objective is to enhance CO2 fixation in the cycle and partition that carbon to a product of interest. Flux control of CO2 fixation is distributed over multiple enzymes, and attempts to modulate gene Calvin cycle gene expression show a robust homeostatic regulation of growth rate, though the synthesis rates of products can be significantly increased. Therefore, de-regulation of cycle enzymes through protein engineering may be necessary to increase fluxes. Non-canonical Calvin Benson cycles, if implemented with synthetic biology, could have reduced energy demand and enzyme loading, thus increasing the attractiveness of these bacteria for industrial applications.
Collapse
Affiliation(s)
- Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Kong W, Kong J, Feng S, Yang T, Xu L, Shen B, Bi Y, Lyu H. Cultivation of microalgae-bacteria consortium by waste gas-waste water to achieve CO 2 fixation, wastewater purification and bioproducts production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:26. [PMID: 38360745 PMCID: PMC10870688 DOI: 10.1186/s13068-023-02409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/10/2023] [Indexed: 02/17/2024]
Abstract
The cultivation of microalgae and microalgae-bacteria consortia provide a potential efficient strategy to fix CO2 from waste gas, treat wastewater and produce value-added products subsequently. This paper reviews recent developments in CO2 fixation and wastewater treatment by single microalgae, mixed microalgae and microalgae-bacteria consortia, as well as compares and summarizes the differences in utilizing different microorganisms from different aspects. Compared to monoculture of microalgae, a mixed microalgae and microalgae-bacteria consortium may mitigate environmental risk, obtain high biomass, and improve the efficiency of nutrient removal. The applied microalgae include Chlorella sp., Scenedesmus sp., Pediastrum sp., and Phormidium sp. among others, and most strains belong to Chlorophyta and Cyanophyta. The bacteria in microalgae-bacteria consortia are mainly from activated sludge and specific sewage sources. Bioengineer in CBB cycle in microalgae cells provide effective strategy to achieve improvement of CO2 fixation or a high yield of high-value products. The mechanisms of CO2 fixation and nutrient removal by different microbial systems are also explored and concluded, the importance of microalgae in the technology is proven. After cultivation, microalgae biomass can be harvested through physical, chemical, biological and magnetic separation methods and used to produce high-value by-products, such as biofuel, feed, food, biochar, fertilizer, and pharmaceutical bio-compounds. Although this technology has brought many benefits, some challenging obstacles and limitation remain for industrialization and commercializing.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Jia Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Shuo Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - TianTian Yang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Lianfei Xu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
| |
Collapse
|
4
|
Laufer-Meiser K, Alawi M, Böhnke S, Solterbeck CH, Schloesser J, Schippers A, Dirksen P, Brüser T, Henkel S, Fuss J, Perner M. Oxidation of sulfur, hydrogen, and iron by metabolically versatile Hydrogenovibrio from deep sea hydrothermal vents. THE ISME JOURNAL 2024; 18:wrae173. [PMID: 39276367 PMCID: PMC11439405 DOI: 10.1093/ismejo/wrae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Chemolithoautotrophic Hydrogenovibrio are ubiquitous and abundant at hydrothermal vents. They can oxidize sulfur, hydrogen, or iron, but none are known to use all three energy sources. This ability though would be advantageous in vents hallmarked by highly dynamic environmental conditions. We isolated three Hydrogenovibrio strains from vents along the Indian Ridge, which grow on all three electron donors. We present transcriptomic data from strains grown on iron, hydrogen, or thiosulfate with respective oxidation and autotrophic carbon dioxide (CO2) fixation rates, RubisCO activity, SEM, and EDX. Maximum estimates of one strain's oxidation potential were 10, 24, and 952 mmol for iron, hydrogen, and thiosulfate oxidation and 0.3, 1, and 84 mmol CO2 fixation, respectively, per vent per hour indicating their relevance for element cycling in-situ. Several genes were up- or downregulated depending on the inorganic electron donor provided. Although no known genes of iron-oxidation were detected, upregulated transcripts suggested iron-acquisition and so far unknown iron-oxidation-pathways.
Collapse
Affiliation(s)
- Katja Laufer-Meiser
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 51, 20246 Hamburg, Germany
| | - Stefanie Böhnke
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| | - Claus-Henning Solterbeck
- Institute for Materials and Surfaces, Kiel University of Applied Sciences, Grenzstrasse 3, 24149 Kiel, Germany
| | - Jana Schloesser
- Institute for Materials and Surfaces, Kiel University of Applied Sciences, Grenzstrasse 3, 24149 Kiel, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany
| | - Philipp Dirksen
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 51, 20246 Hamburg, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Susann Henkel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Janina Fuss
- Institute of Clinical Molecular Biology ,Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Mirjam Perner
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany
| |
Collapse
|
5
|
Toyoda K, Yoshizawa Y, Ishii M, Arai H. Regulation of the high-specificity Rubisco genes by the third CbbR-type regulator in a hydrogen-oxidizing bacterium Hydrogenovibriomarinus. J Biosci Bioeng 2022; 134:496-500. [PMID: 36182634 DOI: 10.1016/j.jbiosc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
The obligate chemolithoautotrophic bacterium, Hydrogenovibrio marinus MH-110, has three ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) isoenzymes, CbbM, CbbLS-1, and CbbLS-2, which differ in CO2/O2 specificity factor values. Expressions of CbbM and CbbLS-1 are regulated differently by transcriptional regulators of the LysR family, CbbRm and CbbR1, respectively. CbbLS-2 has the highest specificity and is induced under low CO2 conditions, but the regulator for the cbbL2S2 genes encoding CbbLS-2 remains unidentified. In this study, the cbbR2 gene encoding the third CbbR-type regulator was identified in the downstream region of the cbbL2S2 and carboxysome gene cluster via transposon mutagenesis. CO2 depletion induced the cbbR2 gene. The cbbR2 knockout mutant could not grow under low CO2 conditions and did not produce CbbLS-2. Recombinant CbbR2 protein was bound to the promoter region of the cbbL2S2 genes. These results indicate that CbbR2 is the specific regulator for CbbLS-2 expression.
Collapse
Affiliation(s)
- Koichi Toyoda
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoichi Yoshizawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaharu Ishii
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
6
|
Pavan M, Reinmets K, Garg S, Mueller AP, Marcellin E, Köpke M, Valgepea K. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng 2022; 71:117-141. [DOI: 10.1016/j.ymben.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
|
7
|
The CbbQO-type rubisco activases encoded in carboxysome gene clusters can activate carboxysomal form IA rubiscos. J Biol Chem 2021; 298:101476. [PMID: 34890642 PMCID: PMC8718961 DOI: 10.1016/j.jbc.2021.101476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023] Open
Abstract
The CO2-fixing enzyme rubisco is responsible for almost all carbon fixation. This process frequently requires rubisco activase (Rca) machinery, which couples ATP hydrolysis to the removal of inhibitory sugar phosphates, including the rubisco substrate ribulose 1,5-bisphosphate (RuBP). Rubisco is sometimes compartmentalized in carboxysomes, bacterial microcompartments that enable a carbon dioxide concentrating mechanism (CCM). Characterized carboxysomal rubiscos, however, are not prone to inhibition, and often no activase machinery is associated with these enzymes. Here, we characterize two carboxysomal rubiscos of the form IAC clade that are associated with CbbQO-type Rcas. These enzymes release RuBP at a much lower rate than the canonical carboxysomal rubisco from Synechococcus PCC6301. We found that CbbQO-type Rcas encoded in carboxysome gene clusters can remove RuBP and the tight-binding transition state analog carboxy-arabinitol 1,5-bisphosphate from cognate rubiscos. The Acidithiobacillus ferrooxidans genome encodes two form IA rubiscos associated with two sets of cbbQ and cbbO genes. We show that the two CbbQO activase systems display specificity for the rubisco enzyme encoded in the same gene cluster, and this property can be switched by substituting the C-terminal three residues of the large subunit. Our findings indicate that the kinetic and inhibitory properties of proteobacterial form IA rubiscos are diverse and predict that Rcas may be necessary for some α-carboxysomal CCMs. These findings will have implications for efforts aiming to introduce biophysical CCMs into plants and other hosts for improvement of carbon fixation of crops.
Collapse
|
8
|
Wang B, Huang J, Yang J, Jiang H, Xiao H, Han J, Zhang X. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiol Ecol 2021; 97:6149456. [PMID: 33629724 DOI: 10.1093/femsec/fiab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
There is limited knowledge of microbial carbon fixation rate, and carbon-fixing microbial abundance and diversity in saline lakes. In this study, the inorganic carbon uptake rates and carbon-fixing microbial populations were investigated in the surface sediments of lakes with a full range of salinity from freshwater to salt saturation. The results showed that in the studied lakes light-dependent bicarbonate uptake contributed substantially (>70%) to total bicarbonate uptake, while the contribution of dark bicarbonate uptake (1.35-25.17%) cannot be ignored. The light-dependent bicarbonate uptake rates were significantly correlated with pH and turbidity, while dark bicarbonate uptake rates were significantly influenced by dissolved inorganic carbon, pH, temperature and salinity. Carbon-fixing microbial populations using the Calvin-Benson-Bassham pathway were widespread in the studied lakes, and they were dominated by the cbbL and cbbM gene types affiliated with Cyanobacteria and Proteobacteria, respectively. The cbbL and cbbM gene abundance and population structures were significantly affected by different environmental variables, with the cbbL and cbbM genes being negatively correlated with salinity and organic carbon concentration, respectively. In summary, this study improves our knowledge of the abundance, diversity and function of carbon-fixing microbial populations in the lakes with a full range of salinity.
Collapse
Affiliation(s)
- Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| |
Collapse
|
9
|
Yang R, Wang J, Zhu L, Wang J, Yang L, Mao S, Conkle JL, Chen Y, Kim YM. Effects of interaction between enrofloxacin and copper on soil enzyme activity and evaluation of comprehensive toxicity. CHEMOSPHERE 2021; 268:129208. [PMID: 33352514 DOI: 10.1016/j.chemosphere.2020.129208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics are detected in association with heavy metals in the soil. However, interactions between antibiotics and heavy metals on soil enzyme activity have yet to been studied thoroughly. In this study, soil enzyme activity (urease, sucrase, phosphatase, and Rubisco) were measured after exposure to soils dosed with copper (Cu) and/or enrofloxacin (ENR) over 28 days. Enzyme responses to ENR only treatments varied, but Cu exhibited a strong negative response from all soil enzymes except Rubisco. An interaction between the effects of the two pollutants on soil enzymes was observed in the combined contamination treatments. Greater comprehensive toxicity to soil enzyme activity was observed in combined treatment groups compared to other groups. We anticipate our studies can provide a scientific theoretical basis for the combined pollution of antibiotics and heavy metals in soil.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Lili Yang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA.
| | - Yangyang Chen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Wang YN, Kai Y, Wang L, Tsang YF, Fu X, Hu J, Xie Y. Key internal factors leading to the variability in CO 2 fixation efficiency of different sulfur-oxidizing bacteria during autotrophic cultivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110957. [PMID: 32579519 DOI: 10.1016/j.jenvman.2020.110957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Variability in the apparent CO2 fixation yield of four aerobic sulfur-oxidizing bacteria (Halothiobacillus neapolitanus DSM 15147, Thiobacillus thioparus DSM 505, Thiomonas intermedia DSM 18155, and Starkeya novella DSM 506) in autotrophic culturing was studied, and mutual effects of key intrinsic factors on CO2 fixation were explored. DSM 15147 and DSM 505 exhibited much higher CO2 fixation yields than DSM 18155 and DSM 506. The differences in CO2 fixation yield were determined not only by cbb gene transcription, but also by cell synthesis rate, which was determined by rRNA gene copy number; the rRNA gene copy number had a more significant effect than cbb gene transcription on the apparent CO2 fixation yield. Moreover, accumulation of EDOC was observed in all four strains during chemoautotrophic cultivation, and the proportion of EDOC accounting for total fixed organic carbon (TOC; EDOC/TOC ratio) was much higher in DSM 18155 and DSM 506 than in DSM 15147 and DSM 505. The accumulation of EDOC led to a significant decrease in the cbb gene transcription efficiency during cultivation, and a further feedback inhibitory effect on CO2 fixation.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yan Kai
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, SAR, Hong Kong, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yanjun Xie
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| |
Collapse
|
11
|
Davidi D, Shamshoum M, Guo Z, Bar‐On YM, Prywes N, Oz A, Jablonska J, Flamholz A, Wernick DG, Antonovsky N, de Pins B, Shachar L, Hochhauser D, Peleg Y, Albeck S, Sharon I, Mueller‐Cajar O, Milo R. Highly active rubiscos discovered by systematic interrogation of natural sequence diversity. EMBO J 2020; 39:e104081. [PMID: 32500941 PMCID: PMC7507306 DOI: 10.15252/embj.2019104081] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022] Open
Abstract
CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.
Collapse
Affiliation(s)
- Dan Davidi
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
Department of GeneticsHarvard Medical SchoolBostonMAUSA
| | - Melina Shamshoum
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Zhijun Guo
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Yinon M Bar‐On
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Noam Prywes
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Aia Oz
- Migal Galilee Research InstituteKiryat ShmonaIsrael
- Tel Hai CollegeUpper GalileeIsrael
| | - Jagoda Jablonska
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Avi Flamholz
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - David G Wernick
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
BASF Enzymes LLCSan DiegoCAUSA
| | - Niv Antonovsky
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
- Present address:
Laboratory of Genetically Encoded Small MoleculesThe Rockefeller UniversityNew YorkNYUSA
| | - Benoit de Pins
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lior Shachar
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Dina Hochhauser
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Yoav Peleg
- Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Shira Albeck
- Department of Life Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Itai Sharon
- Migal Galilee Research InstituteKiryat ShmonaIsrael
- Tel Hai CollegeUpper GalileeIsrael
| | | | - Ron Milo
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
12
|
Complete Genome Sequence of a Mesophilic Obligately Chemolithoautotrophic Hydrogen-Oxidizing Bacterium, Hydrogenovibrio marinus MH-110. Microbiol Resour Announc 2019; 8:8/42/e01132-19. [PMID: 31624154 PMCID: PMC6797543 DOI: 10.1128/mra.01132-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydrogenovibrio marinus is a mesophilic, obligately chemolithoautotrophic, and hydrogen-oxidizing bacterium that uses three different RubisCOs at different carbon dioxide tensions. Here, we report its complete genome sequence, which is 2,491,293 bp long, with an average GC content of 44.1%. Hydrogenovibrio marinus is a mesophilic, obligately chemolithoautotrophic, and hydrogen-oxidizing bacterium that uses three different RubisCOs at different carbon dioxide tensions. Here, we report its complete genome sequence, which is 2,491,293 bp long, with an average GC content of 44.1%.
Collapse
|
13
|
iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves. Int J Mol Sci 2018; 19:ijms19123943. [PMID: 30544636 PMCID: PMC6321456 DOI: 10.3390/ijms19123943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism. Additionally, a positive feedback mechanism was verified at the protein level (Mg chelatase and chlorophyll b reductase) in the chlorophyll biosynthetic pathway, which might effectively promote the accumulation of chlorophyll b in response to the demand for this pigment in the cells of chlorotic tea leaves in weakened carbon metabolism.
Collapse
|