1
|
Czajka JJ, Dai Z, Radivojević T, Kim J, Deng S, Lemmon T, Swita M, Burnet MC, Munoz N, Gao Y, Kim YM, Hofstad B, Magnuson JK, Garcia Martin H, Burnum-Johnson KE, Pomraning KR. Enabling malic acid production from corn-stover hydrolysate in Lipomyces starkeyi via metabolic engineering and bioprocess optimization. Microb Cell Fact 2025; 24:117. [PMID: 40394595 PMCID: PMC12093598 DOI: 10.1186/s12934-025-02705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/24/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Lipomyces starkeyi is an oleaginous yeast with a native metabolism well-suited for production of lipids and biofuels from complex lignocellulosic and waste feedstocks. Recent advances in genetic engineering tools have facilitated the development of L. starkeyi into a microbial chassis for biofuel and chemical production. However, the feasibility of redirecting L. starkeyi lipid flux away from lipids and towards other products remains relatively unexplored. Here, we engineer the native metabolism to produce malic acid by introducing the reductive TCA pathway and a C4-dicarboxylic acid transporter to the yeast. RESULTS Heterogeneous expression of two genes, the Aspergillus oryzae malate transporter and malate dehydrogenase, enabled L. starkeyi malic acid production. Overexpression of a third gene, the native pyruvate carboxylase, allowed titers to reach approximately 10 g/L during shaking flasks cultivations, with production of malic acid inhibited at pH values less than 4. Corn-stover hydrolysates were found to be well-tolerated, and controlled bioreactor fermentations on the real hydrolysate produced 26.5 g/L of malic acid. Proteomic, transcriptomic and metabolomic data from real and mock hydrolysate fermentations indicated increased levels of a S. cerevisiae hsp9/hsp12 homolog (proteinID: 101453), glutathione dependent formaldehyde dehydrogenases (proteinIDs: 2047, 278215), oxidoreductases, and expression of efflux pumps and permeases during growth on the real hydrolysate. Simultaneously, machine learning based medium optimization improved production dynamics by 18% on mock hydrolysate and revealed lower tolerance to boron (a trace element included in the standard cultivation medium) than other yeasts. CONCLUSIONS Together, this work demonstrated the ability to produce organic acids in L. starkeyi with minimal byproducts. The fermentation characterization and omic analyses provide a rich dataset for understanding L. starkeyi physiology and metabolic response to growth in hydrolysates. Identified upregulated genes and proteins provide potential targets for overexpression for improving growth and tolerance to concentrated hydrolysates, as well as valuable information for future L. starkeyi engineering work.
Collapse
Affiliation(s)
- Jeffrey J Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Ziyu Dai
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Tijana Radivojević
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Shuang Deng
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Marie Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Meagan C Burnet
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Beth Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jon K Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Hector Garcia Martin
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- DOE Joint BioEnergy Institute, Emeryville, CA, 94608, USA
| | - Kristin E Burnum-Johnson
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kyle R Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
- DOE Agile BioFoundry, Emeryville, CA, 94608, USA.
| |
Collapse
|
2
|
Zhang L, Lee JTE, Ok YS, Dai Y, Tong YW. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: A review. BIORESOURCE TECHNOLOGY 2022; 344:126294. [PMID: 34748983 DOI: 10.1016/j.biortech.2021.126294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The enhanced production of microbial lipids suitable for manufacturing biodiesel from oleaginous yeast Lipomyces starkeyi is critically reviewed. Recent advances in several aspects involving the biosynthetic pathways of lipids, current conversion efficiencies using various carbon sources, intensification strategies for improving lipid yield and productivity in L. starkeyi fermentation, and lipid extraction approaches are analyzed from about 100 papers for the past decade. Key findings on strategies are summarized, including (1) optimization of parameters, (2) cascading two-stage systems, (3) metabolic engineering strategies, (4) mutagenesis followed by selection, and (5) co-cultivation of yeast and algae. The current technical limitations are analyzed. Research suggestions like examination of more gene targets via metabolic engineering are proposed. This is the first comprehensive review on the latest technical advances in strategies from the perspective of process and metabolic engineering to further increase the lipid yield and productivity from L. starkeyi fermentation.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jonathan T E Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
4
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
5
|
da Cunha Abreu Xavier M, Teixeira Franco T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett 2021; 43:967-979. [PMID: 33517513 DOI: 10.1007/s10529-021-03080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.
Collapse
Affiliation(s)
- Michelle da Cunha Abreu Xavier
- Department of Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Badejos Street 69-72, Jardim Cervilha, Gurupi, TO, 77404-970, Brazil.
| | - Telma Teixeira Franco
- Department of Process Engineering (DEPro), School of Chemical Engineering, State University of Campinas (UNICAMP), Albert Einstein Avenue, 500, Zeferino Vaz University City, Campinas, SP, 13083-852, Brazil
| |
Collapse
|