1
|
Lee S, Choi Y, Jeong E, Park J, Kim J, Tanaka M, Choi J. Physiological significance of elevated levels of lactate by exercise training in the brain and body. J Biosci Bioeng 2023; 135:167-175. [PMID: 36681523 DOI: 10.1016/j.jbiosc.2022.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
For the past 200 years, lactate has been regarded as a metabolic waste end product that causes fatigue during exercise. However, lactate production is closely correlated with energy metabolism. The lactate dehydrogenase-catalyzed reaction uses protons to produce lactate, which delays ongoing metabolic acidosis. Of note, lactate production differs depending on exercise intensity and is not limited to muscles. Importantly, controlling physiological effect of lactate may be a solution to alleviating some chronic diseases. Released through exercise, lactate is an important biomarker for fat oxidation in skeletal muscles. During recovery after sustained strenuous exercise, most of the lactate accumulated during exercise is removed by direct oxidation. However, as the muscle respiration rate decreases, lactate becomes a desirable substrate for hepatic glucose synthesis. Furthermore, improvement in brain function by lactate, particularly, through the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, is being increasingly studied. In addition, it is possible to improve stress-related symptoms, such as depression, by regulating the function of hippocampal mitochondria, and with an increasingly aging society, lactate is being investigated as a preventive agent for brain diseases such as Alzheimer's disease. Therefore, the perception that lactate is equivalent to fatigue should no longer exist. This review focuses on the new perception of lactate and how lactate acts extensively in the skeletal muscles, heart, brain, kidney, and liver. Additionally, lactate is now used to confirm exercise performance and should be further studied to assess its impact on exercise training.
Collapse
Affiliation(s)
- Sungjun Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea
| | - Eunseo Jeong
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jongjun Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jiwon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Feynman Institute of Technology, Nanomedicine Corporation, Seoul 06974, Republic of Korea; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cost of fermentable sugars added as a substrate is one major problem for economic lactic acid (LA) production. Old oil palm trunks (OPT) squeezed sap, the agricultural wastes on replanting and pruning of oil palm (Elaeis guineensis), contained mainly glucose and fructose as a potential feedstock to use as a vast carbon source for LA production. To improve the LA yield and productivity, various fermentation modes were performed by Lactobacillus rhamnosus ATCC 10863 using OPT sap as a basal medium. A modified constant feed mode of fed-batch and repeated fed-batch fermentation using undiluted OPT sap feed medium can achieve a high average LA concentration of 95.94 g/L, yield of 1.04 g/g, and productivity of 6.40 g/L/h) at 11 h cultivation time. It can also provide open and open repeated batch fermentation with an average LA concentration of 91.30 g/L, yield of 0.87 g/g, and productivity of 3.88 g/L/h at 21 h fermentation time.
Collapse
|
3
|
Probiotic Effects and Metabolic Products of Enterococcus faecalis LD33 with Respiration Capacity. Foods 2022; 11:foods11040606. [PMID: 35206082 PMCID: PMC8871233 DOI: 10.3390/foods11040606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Respiration metabolism could improve the long-term survival of lactic acid bacteria (LAB); however, its effect on potential probiotic traits of LAB was not reported. The difference made by Enterococcus faecalis LD33 that was cultured under respiration-permissive and fermentation conditions, such as the biomass, metabolites, antimicrobial activity, tolerance to acid and bile salt, adhesion capabilities, and the ability to inhibit the proliferation of cancer cells were studied. Under a respiration-permissive condition, the final biomass of the culture was about twice as compared to that of fermentation condition. When the metabolites were measured, glucose was exhausted within 8 h. Two-folds of acetic acid, triple of both acetoin and diacetyl, and less than half of lactic acid, were accumulated under the respiratory-permissive condition. No discrimination of growth inhibition on Salmonella enterica serovar Typhimurium ATCC 14028 and Shigella sonnei ATCC 25931 was observed when Enterococcus faecalis LD33 was cultured under both conditions; however, under respiration-permissive condition, the strain presented significant antimicrobial activities to Listeria monocytogenes ATCC19111 and Staphylococcus aureus ATCC6538P. Enterococcus faecalis LD33 displayed relatively strong bile salt tolerance and adherence capability but weaker acid tolerance when undergoing respiration metabolism. There was no significant difference in the anti-cancer effect of the viable bacterial cells on both growth modes; however, the supernatant showed a higher inhibition effect on HT-29 cells than the live bacteria, and there was no significant difference between the supernatant and the 5-Fluorouracil (7 μg/mL). Consequently, the Enterococcus faecalis LD33 undergoing respiration metabolism could bring higher biomass, more flavor metabolites, and better antimicrobial and anti-cancer activities. This study extends our knowledge of respiratory metabolism in LAB and its impact on probiotic traits. E. faecalis LD33 qualifies as a suitable strain against foodborne pathogens, cancer therapy, and eventual application in the food and pharmaceutical industries.
Collapse
|
4
|
Zhao H, Liu M, Lv Y, Fang M. Dose-response metabolomics and pathway sensitivity to map molecular cartography of bisphenol A exposure. ENVIRONMENT INTERNATIONAL 2022; 158:106893. [PMID: 34592654 DOI: 10.1016/j.envint.2021.106893] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In the toxicological regime, the toxicological endpoint and its dose-response relationship are two of the most prominent characters in conducting a risk assessment for chemical exposure. Systems biological methods have been used to comprehensively characterize the impact of toxicants on the biochemical pathways. However, the majority of the current studies are only based on single-dose, and limited information can be extrapolated to other doses from these experiments, regardless of the sensitivity of each endpoint. This study aims to understand the dose-response metabolite dysregulation pattern and metabolite sensitivity at the system-biological level. Here, we applied bisphenol A (BPA), an endocrine-disrupting chemical (EDC), as the model chemical. We first employed the global metabolomics method to characterize the metabolome of breast cancer cells (MCF-7) upon exposure to different doses (0, 20, 50, and 100 µM) of BPA. The dysregulated features with a clear dose-response relationship were also effectively picked up with an R-package named TOXcms. Overall, most metabolites were dysregulated by showing a significant dose-dependent behaviour. The results suggested that BPA exposure greatly perturbed purine metabolism and pyrimidine metabolism. Interestingly, most metabolites within the purine metabolism were described as a biphasic dose-response relationship. With the established dose-response relationship, we were able to fully map the metabolite cartography of BPA exposure within a wide range of concentrations and observe some unique patterns. Furthermore, an effective concentration of certain fold changes (e.g., EC+10 means the dose at which metabolite is 10% upregulated) and metabolite sensitivity were defined and introduced to this dose-response omics information. The result showed that the purine metabolism pathway is the most venerable target of BPA, which can be a potential endogenous biomarker for its exposure. Overall, this study applied the dose-response metabolomics method to fully understand the biochemical pathway disruption of BPA treatment at different doses. Both dose-response omics strategy and metabolite sensitivity analysis can be further considered and emphasized in future chemical risk assessments.
Collapse
Affiliation(s)
- Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yunbo Lv
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| |
Collapse
|
5
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
6
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
7
|
Sano A, Takatera M, Kawai M, Ichinose R, Yamasaki-Yashiki S, Katakura Y. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. J Biosci Bioeng 2020; 130:402-408. [PMID: 32669208 DOI: 10.1016/j.jbiosc.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Aerobic fed-batch cultures were studied as a means of suppressing the production of lactate, which inhibits the growth of lactic acid bacteria (LAB). LAB produce lactate via lactate dehydrogenase (LDH), regenerating nicotinamide adenine dinucleotide (NAD+) consumed during glycolysis. Therefore, we focused on NADH oxidase (NOX), employing oxygen as an electron acceptor, as an alternative pathway to LDH for NAD+ regeneration. To avoid glucose repression of NOX and NAD+ consumption by glycolysis exceeding NAD+ regeneration by NOX, glucose was fed gradually. When Lactococcus lactis MG 1363 was aerobically fed at a specific growth rate of 0.2 h-1, the amount of lactate produced per amount of grown cell was reduced to 12% of that in anaerobic batch cultures. Metabolic flux analysis revealed that in addition to NAD+ regeneration by NOX, ATP acquisition by production of acetate and NAD+ regeneration by production of acetoin and 2,3-butanediol contributed to suppression of lactate production.
Collapse
Affiliation(s)
- Anna Sano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Misato Takatera
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Mio Kawai
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
8
|
Suppression of lactate production in fed-batch culture of some lactic acid bacteria with sucrose as the carbon source. J Biosci Bioeng 2019; 129:535-540. [PMID: 31836379 DOI: 10.1016/j.jbiosc.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
We report a method for suppression of lactate production by lactic acid bacteria (LAB) in culture. LAB produce lactate to regenerate NAD+ that is consumed during glycolysis. Glucose suppresses NAD+ regeneration pathways other than lactate dehydrogenase and non-glycolytic ATP production pathways. Therefore, the carbon source was changed to sucrose, and fed-batch culture was performed to limit the glycolytic flux and thus suppress lactate production. As a result, lactate productivity (i.e., the amount of lactate produced per amount of grown cell) in the sucrose/fed-batch culture was decreased compared to that in glucose/batch culture, in all five LAB strains examined. The productivity level decreased to 24% and 46% in Lactobacillus reuteri JCM 1112 and Lactococcus lactis JCM 7638, respectively. Metabolic flux analysis of Lactobacillus reuteri JCM 1112 revealed increased contributions of the mannitol production pathway to NAD+ regeneration and the arginine deiminase pathway to ATP production in the sucrose/fed-batch culture.
Collapse
|