1
|
Chen S, Rao M, Jin W, Hu M, Chen D, Ge M, Mao W, Qian X. Metabolomic analysis in Amycolatopsis keratiniphila disrupted the competing ECO0501 pathway for enhancing the accumulation of vancomycin. World J Microbiol Biotechnol 2024; 40:297. [PMID: 39126539 DOI: 10.1007/s11274-024-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Vancomycin is a clinically important glycopeptide antibiotic against Gram-positive pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus. In the mutant strain of Amycolatopsis keratiniphila HCCB10007 Δeco-cds4-27, the production of ECO-0501 was disrupted, but enhanced vancomycin yield by 55% was observed compared with the original strain of A. keratiniphila HCCB10007. To gain insights into the mechanism of the enhanced production of vancomycin in the mutant strain, comparative metabolomics analyses were performed between the mutant strain and the original strain, A. keratiniphila HCCB10007 via GC-TOF-MS and UPLC-HRMS. The results of PCA and OPLS-DA revealed a significant distinction of the intracellular metabolites between the two strains during the fermentation process. 64 intracellular metabolites, which involved in amino acids, fatty acids and central carbon metabolism, were identified as differential metabolites. The high-yield mutant strain maintained high levels of glucose-1-phosphate and glucose-6-phosphate and they declined with the increases of vancomycin production. Particularly, a strong association of fatty acids accumulation as well as 3,5-dihydroxyphenylacetic acid and non-proteinogenic amino acid 3,5-dihydroxyphenylglycine (Dpg) with enhancement of vancomycin production was observed in the high-yield mutant strain, indicating that the consumption of fatty acid pools might be beneficial for giving rise to 3,5-dihydroxyphenylacetic acid and Dpg which further lead to improve vancomycin production. In addition, the lower levels of glyoxylic acid and lactic acid and the higher levels of sulfur amino acids might be beneficial for improving vancomycin production. These findings proposed more advanced elucidation of metabolomic characteristics in the high-yield strain for vancomycin production and could provide potential strategies to enhance the vancomycin production.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Min Rao
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenxiang Jin
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Cui C, Yan J, Liu Y, Zhang Z, Su Q, Kong M, Zhou C, Ming H. One-pot biosynthesis of gastrodin using UDP-glycosyltransferase itUGT2 with an in situ UDP-glucose recycling system. Enzyme Microb Technol 2023; 166:110226. [PMID: 36913860 DOI: 10.1016/j.enzmictec.2023.110226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Gastrodin, the major effective ingredient in Tianma (Gastrodia elata), is a p-hydroxybenzoic acid derivative with various activities. Gastrodin has been widely investigated for food and medical applications. The last biosynthetic step for gastrodin is UDP-glycosyltransferase (UGT)-mediated glycosylation with UDP-glucose (UDPG) as glycosyl donor. In this study, we performed a one-pot reaction both in vitro and in vivo to synthesize gastrodin from p-hydroxybenzyl alcohol (pHBA) by coupling UDP-glucosyltransferase from Indigofera tinctoria (itUGT2) to sucrose synthase from Glycine max (GmSuSy) for regeneration of UDPG. The in vitro results showed that itUGT2 transferred a glucosyl group to pHBA to generate gastrodin. After 37 UDPG regeneration cycles with 2.5% (molar ratio) UDP, the pHBA conversion reached 93% at 8 h. Furthermore, a recombinant strain with itUGT2 and GmSuSy genes was constructed. Through optimizing the incubation conditions, a 95% pHBA conversion rate (220 mg/L gastrodin titer) was achieved in vivo without addition of UDPG, which was 2.6-fold higher than that without GmSuSy. This in situ system for gastrodin biosynthesis provides a highly efficient strategy for both in vitro gastrodin synthesis and in vivo biosynthesis of gastrodin in E. coli with UDPG regeneration.
Collapse
Affiliation(s)
- Caixia Cui
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| | - Jinyuan Yan
- Changdu Bureau of Science and Technology, Changdu 854000, PR China
| | - Yongtao Liu
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Zhao Zhang
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Qingyang Su
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Mengyuan Kong
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Chenyan Zhou
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Hong Ming
- Department of Biopharmaceutical Sciences, Synthetic Biology Engineering Lab of Henan Province, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
3
|
Boness HVM, de Sá HC, Dos Santos EKP, Canuto GAB. Sample Preparation in Microbial Metabolomics: Advances and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:149-183. [PMID: 37843809 DOI: 10.1007/978-3-031-41741-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microbial metabolomics has gained significant interest as it reflects the physiological state of microorganisms. Due to the great variability of biological organisms, in terms of physicochemical characteristics and variable range of concentration of metabolites, the choice of sample preparation methods is a crucial step in the metabolomics workflow and will reflect on the quality and reliability of the results generated. The procedures applied to the preparation of microbial samples will vary according to the type of microorganism studied, the metabolomics approach (untargeted or targeted), and the analytical platform of choice. This chapter aims to provide an overview of the sample preparation workflow for microbial metabolomics, highlighting the pre-analytical factors associated with cultivation, harvesting, metabolic quenching, and extraction. Discussions focus on obtaining intracellular and extracellular metabolites. Finally, we introduced advanced sample preparation methods based on automated systems.
Collapse
Affiliation(s)
- Heiter V M Boness
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Hanna C de Sá
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Emile K P Dos Santos
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
4
|
Improvement of Biosynthetic Ansamitocin P-3 Production Based on Oxygen-Vector Screening and Metabonomics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3564185. [PMID: 35692578 PMCID: PMC9184225 DOI: 10.1155/2022/3564185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/23/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
A novel approach involving exogenous oxygen vectors was developed for improving the production of biosynthetic Ansamitocin P-3 (AP-3). Four types of oxygen vectors including soybean oil, n-dodecane, n-hexadecane, and Tween-80 were applied to explore the effect of exogenous oxygen vectors on AP-3 yield. It was observed that soybean oil exhibited a better ability for promoting AP-3 generation than the other three oxygen vectors. Based on the results of the single-factor experiment, response surface methodology was employed to obtain the optimal soybean oil addition method. The optimum soybean oil concentration was 0.52%, and the addition time was 50 h. Under this condition, the yield of AP-3 reached 106.04 mg/L, which was 49.48% higher than that of the control group without adding oxygen vectors. To further investigate the influence of dissolved oxygen on precious orange tufts actinomycetes variety A. pretiosum strain metabolism and AP-3 yield, metabolomics analysis was carried out by detecting strain intermediate metabolites at various stages under different dissolved oxygen levels. Moreover, differential metabolite screening and metabolic pathway enrichment analysis were combined to exploit the effect mechanism of soybean oil on AP-3 production. Results suggested that primary metabolic levels of the TCA cycle and amino acid metabolism increased with the increase in dissolved oxygen level, which was beneficial to the life activities of bacteria and the synthesis of secondary metabolic precursors, thus increasing the production of AP-3.
Collapse
|
5
|
Zhang P, Zhang K, Liu Y, Fu J, Zong G, Ma X, Cao G. Deletion of the Response Regulator PhoP Accelerates the Formation of Aerial Mycelium and Spores in Actinosynnema pretiosum. Front Microbiol 2022; 13:845620. [PMID: 35464974 PMCID: PMC9019756 DOI: 10.3389/fmicb.2022.845620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
PhoPR is an important two-component signal transduction system (TCS) for microorganisms to sense and respond to phosphate limitation. Although the response regulator PhoP controls morphological development and secondary metabolism in various Streptomyces species, the function of PhoP in Actinosynnema pretiosum remains unclear. In this study, we showed that PhoP significantly represses the morphological development of the A. pretiosum X47 strain. Production of aerial mycelium and spore formation occurred much earlier in the ΔphoP strain than in X47 during growth on ISP2 medium. Transcription analysis indicated that 222 genes were differentially expressed in ∆phoP compared to strain X47. Chemotaxis genes (cheA, cheW, cheX, and cheY); flagellum biosynthesis and motility genes (flgBCDGKLN, flaD, fliD-R, motA, and swrD); and differentiation genes (whiB and ssgB) were significantly upregulated in ∆phoP. Gel-shift analysis indicated that PhoP binds to the promoters of flgB, flaD, and ssgB genes, and PHO box-like motif with the 8-bp conserved sequence GTTCACGC was identified. The transcription of phoP/phoR of X47 strain was induced at low phosphate concentration. Our results demonstrate that PhoP is a negative regulator that controls the morphological development of A. pretiosum X47 by repressing the transcription of differentiation genes.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kunyu Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yayu Liu
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Gongli Zong
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Ma
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
6
|
Cheng H, Xiong G, Li Y, Zhu J, Xiong X, Wang Q, Zhang L, Dong H, Zhu C, Liu G, Chen H. Increased yield of AP-3 by inactivation of asm25 in Actinosynnema pretiosum ssp. auranticum ATCC 31565. PLoS One 2022; 17:e0265517. [PMID: 35316825 PMCID: PMC8939807 DOI: 10.1371/journal.pone.0265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Asamitocins are maytansinoids produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565 (A. pretiosum ATCC 31565), which have a structure similar to that of maytansine, therefore serving as a precursor of maytansine in the development of antibody-drug conjugates (ADCs). Currently, there are more than 20 known derivatives of ansamitocins, among which ansamitocin P-3 (AP-3) exhibits the highest antitumor activity. Despite its importance, the application of AP-3 is restricted by low yield, likely due to a substrate competition mechanism underlying the synthesis pathways of AP-3 and its byproducts. Given that N-demethylansamitocin P-3, the precursor of AP-3, is regulated by asm25 and asm10 to synthesize AGP-3 and AP-3, respectively, asm25 is predicted to be an inhibitory gene for AP-3 production. In this study, we inactivated asm25 in A. pretiosum ATCC 31565 by CRISPR-Cas9-guided gene editing. asm25 depletion resulted in a more than 2-fold increase in AP-3 yield. Surprisingly, the addition of isobutanol further improved AP-3 yield in the asm25 knockout strain by more than 6 times; in contrast, only a 1.53-fold increase was found in the WT strain under the parallel condition. Thus, we uncovered an unknown function of asm25 in AP-3 yield and identified asm25 as a promising target to enhance the large-scale industrial production of AP-3.
Collapse
Affiliation(s)
- Hong Cheng
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Guoqing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- Academy of Military Medical Sciences, Beijing, China
| | - Yi Li
- Academy of Military Medical Sciences, Beijing, China
| | - Jiaqi Zhu
- Academy of Military Medical Sciences, Beijing, China
- School of Life Science and Technology, Dalian University, Dalian, China
| | | | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | | | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
- * E-mail: (GL); (HC)
| | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Kumpf A, Kowalczykiewicz D, Szymańska K, Mehnert M, Bento I, Łochowicz A, Pollender A, Jarzȩbski A, Tischler D. Immobilization of the Highly Active UDP-Glucose Pyrophosphorylase From Thermocrispum agreste Provides a Highly Efficient Biocatalyst for the Production of UDP-Glucose. Front Bioeng Biotechnol 2020; 8:740. [PMID: 32714915 PMCID: PMC7343719 DOI: 10.3389/fbioe.2020.00740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biocatalysis that produces economically interesting compounds can be carried out by using free enzymes or microbial cells. However, often the cell metabolism does not allow the overproduction or secretion of activated sugars and thus downstream processing of these sugars is complicated. Here enzyme immobilization comes into focus in order to stabilize the enzyme as well as to make the overall process economically feasible. Besides a robust immobilization method, a highly active and stable enzyme is needed to efficiently produce the product of choice. Herein, we report on the identification, gene expression, biochemical characterization as well as immobilization of the uridine-5′-diphosphate-glucose (UDP-glucose) pyrophosphorylase originating from the thermostable soil actinobacterium Thermocrispum agreste DSM 44070 (TaGalU). The enzyme immobilization was performed on organically modified mesostructured cellular foams (MCF) via epoxy and amino group to provide a stable and active biocatalyst. The soluble and highly active TaGalU revealed a Vmax of 1698 U mg–1 (uridine-5′-triphosphate, UTP) and a Km of 0.15 mM (UTP). The optimum reaction temperature was determined to be 50°C. TaGalU was stable at this temperature for up to 30 min with a maximum loss of activity of 65%. Interestingly, immobilized TaGalU was stable at 50°C for at least 120 min without a significant loss of activity, which makes this enzyme an interesting biocatalyst for the production of UDP-glucose.
Collapse
Affiliation(s)
- Antje Kumpf
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany.,Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany.,EMBL Hamburg, Hamburg, Germany
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland
| | - Maria Mehnert
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Aleksandra Łochowicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - André Pollender
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andrzej Jarzȩbski
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland.,Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland
| | - Dirk Tischler
- Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|