1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2025; 17:292-314. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Yang J, Yang Z, Wang J, Liang Y, Zeng H, Qin L, Song X, Mo L. Toxic effects and mechanisms of nanoplastics and sulfonamide antibiotics on Scenedesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117685. [PMID: 39778312 DOI: 10.1016/j.ecoenv.2025.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The prevalence of nanoplastics (NPs) and sulfonamide antibiotics (SAs) in the aquatic environment is potentially harmful to the environment, and these pollutants are often present in the environment in the form of composite ones, thereby introducing more complex effects and hazards to the environment. Therefore, it is crucial to investigate the toxic effects of the individual target pollutants and their mixtures. In this study, we used Scenedesmus obliquus as the test organisms, two types of NPs: polystyrene (PS) and amine-modified (NH2-PS), four SAs: sulfapyridine (SPY), sulfamethazine (SMR), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ), and their eight binary mixtures were examined. We investigated the toxic interactions of the eight binary mixtures on Scenedesmus obliquus and assessed the impact of the 14 mixtures on the physiological and biochemical properties of Scenedesmus obliquus. Interaction of pollutant assemblages with algal cells observed using field emission scanning electron microscopy. The results showed that the six target pollutants and their eight binary mixtures were significantly toxic to Scenedesmus obliquus within 96 h. The toxicity of individual pollutants was in the order of SPY (EC50: 12.38 mg/L) > SMZ (EC50: 20.43 mg/L) > SMP (EC50: 32.96 mg/L) > SMR (EC50: 41.06 mg/L) > PS (EC50: 284.13 mg/L) > NH2-PS (EC50: 754.13 mg/L); the toxicity of binary mixtures composed of NPs and SAs (89.13 ∼ 1905.46 mg/L) was generally less toxic than that of unitary SAs (12.38 ∼ 41.06 mg/L). Suggesting that the presence of NPs reduced the toxicity of the SAs. The different types of NPs influenced the interaction and toxicity of the mixtures. The effects-based model deviation ratio method was used to quantitatively assess the interactions of the mixture systems in the 10∼90 % experimental effect range. The majority of the PS-containing mixtures exhibited antagonistic interactions. The interactions of NH2-PS-containing mixtures on Scenedesmus obliquus showed different interactions depending on the concentration ratios of the mixture components. The exposure of two NPs and four SAs and their binary mixtures differently promoted or inhibited superoxide dismutase and catalase activities in algal cells to different degrees and resulted in elevated levels of malondialdehyde content, suggesting that oxidative stress led to significant inhibition of chlorophyll content, total protein content, and growth of algal cells. The SEM image can be a more intuitive means of observing the interaction of nanoplastics with algal cells. These findings offer valuable data for the ecological risk assessment of NPs and SAs.
Collapse
Affiliation(s)
- Jianyuan Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhen Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Engineering Research Center of Guangxi Universities for Watershed Protection and Green Development, Guilin University of Technology, Guilin 541004, China.
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Engineering Research Center of Guangxi Universities for Watershed Protection and Green Development, Guilin University of Technology, Guilin 541004, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Region.
| | - Xiaohong Song
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Engineering Research Center of Guangxi Universities for Watershed Protection and Green Development, Guilin University of Technology, Guilin 541004, China
| | - Lingyun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Region
| |
Collapse
|
3
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Li S, Wang Y, Xu G, Xu Y, Fu C, Zhao Q, Xu L, Jia X, Zhang Y, Liu Y, Qiao J. The combination of allicin with domiphen is effective against microbial biofilm formation. Front Microbiol 2024; 15:1341316. [PMID: 38873153 PMCID: PMC11169630 DOI: 10.3389/fmicb.2024.1341316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Microorganisms in biofilms are particularly difficult to control because of their increased survival and antibiotic resistance. Allicin and domiphen were employed to inhibit the microbial growth and biofilm formation of Staphylococcus aureus, Escherichia coli, and Candida albicans strains. Methods Broth microdilution method and checkerboard assay were conducted to determine the efficacy of allicin combined with domiphen against S. aureus, E. coli, and C. albicans. Microbial biofilm formation was measured using the crystal violet staining method and fluorescence microscopy. And the total viable count of the biofilm cells on material surface after the treatment with antimicrobial reagents was calculated with the plate count technique. Results The two drugs showed synergistic effects against the pathogens with a fractional bactericidal concentration of less than 0.38. The combination of 64 μg/mL allicin with 1 μg/mL domiphen dispersed over 50% of the biofilm mass of S. aureus, E. coli, and C. albicans. In addition, the drug combination reduced the total viable counts of E. coli and C. albicans biofilm cells on stainless steel and polyethylene surfaces by more than 102 CFU/mL. Conclusion The combination of allicin and domiphen is an effective strategy for efficiently decreasing biofilms formation on various industrial materials surfaces.
Collapse
Affiliation(s)
- Shang Li
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yutong Wang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Geweirong Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Cuiyan Fu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Quanlin Zhao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Linjie Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinzhou Jia
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaju Qiao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Xu Y, Tao M, Xu W, Xu L, Yue L, Cao X, Chen F, Wang Z. Nano-CeO 2 activates physical and chemical defenses of garlic (Allium sativum L.) for reducing antibiotic resistance genes in plant endosphere. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116289. [PMID: 38570269 DOI: 10.1016/j.ecoenv.2024.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.
Collapse
Affiliation(s)
- Yinuo Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Wei Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; School of Environment & Energy, South China University of Technology, Guangzhou 510006, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Malczak I, Gajda A. Interactions of naturally occurring compounds with antimicrobials. J Pharm Anal 2023; 13:1452-1470. [PMID: 38223447 PMCID: PMC10785267 DOI: 10.1016/j.jpha.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 01/16/2024] Open
Abstract
Antibiotics are among the most often used medications in human healthcare and agriculture. Overusing these substances can lead to complications such as increasing antibiotic resistance in bacteria or a toxic effect when administering large amounts. To solve these problems, new solutions in antibacterial therapy are needed. The use of natural products in medicine has been known for centuries. Some of them have antibacterial activity, hence the idea to combine their activity with commercial antibiotics to reduce the latter's use. This review presents collected information on natural compounds (terpenes, alkaloids, flavonoids, tannins, sulfoxides, and mycotoxins), of which various drug interactions have been observed. Many of the indicated compounds show synergistic or additive interactions with antibiotics, which suggests their potential for use in antibacterial therapy, reducing the toxicity of the antibiotics used and the risk of further development of bacterial resistance. Unfortunately, there are also compounds which interact antagonistically, potentially hindering the therapy of bacterial infection. Depending on its mechanism of action, each compound can behave differently in combination with different antibiotics and when acting against various bacterial strains.
Collapse
Affiliation(s)
- Izabela Malczak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| |
Collapse
|
7
|
García MT, Garcia-Vargas JM, Fernández LAG, Cuevas P, Gracia I. Garlic Extracts: Effect of pH on Inhibition of Helicobacter pylori. Life (Basel) 2023; 13:1434. [PMID: 37511809 PMCID: PMC10381254 DOI: 10.3390/life13071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The present work studies the influence of pH on the stability of thiosulfinates, compounds responsible for the bacteriostatic properties shown by ethanolic and acetonic garlic extracts (EGE and AGE) against the in vitro growth of Helicobacter pylori (Hp), a bacterium which is implicated in the etiology of diverse gastrointestinal diseases. The influence of pH and time on the stability of thiosulfinates and the microbiological activities of EGE and AGE has been evaluated at human body temperature (37 °C) and in a pH range of 0.9-4.7. A marked decrease in thiosulfinate concentration was observed in a relatively short time at pH values below 2.0. However, at pH values over 2.0, the samples maintained 70% of thiosulfinate concentration for 12 h. The inhibition halo diameters showed a maximum value at pH 2.50, with an inhibition halo of 28.94 ± 0.61 mm. The reduction in the activity at pH values below 2.0 was particularly remarkable. These results suggest that, for medical application, the pH of the selected extracts must only be maintained above 2 to maintain a high level of antibacterial activity. This fact would overcome the need for proton pump inhibitors and/or antibiotics during the treatment of Hp infections in human patients.
Collapse
Affiliation(s)
- Maria Teresa García
- Departamento Ingeniería Química, Faculty of Chemistry and Chemical Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13004 Ciudad Real, Spain
| | - Jesus Manuel Garcia-Vargas
- Departamento Ingeniería Química, Faculty of Chemistry and Chemical Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13004 Ciudad Real, Spain
| | - Luis Antonio Gómez Fernández
- Departamento Ingeniería Química, Faculty of Chemistry and Chemical Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13004 Ciudad Real, Spain
| | - Pedro Cuevas
- Histology Service, Hospital "Ramón y Cajal", Planta 10 Izda., Ctra. Colmenar Viejo Km 9.1, 28034 Madrid, Spain
| | - Ignacio Gracia
- Departamento Ingeniería Química, Faculty of Chemistry and Chemical Technologies, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13004 Ciudad Real, Spain
| |
Collapse
|
8
|
Ding S, Zhao J, Jiang Z, Mu J, Huang L, Dai C. Fabrication of whey protein isolate/chitosan complexes and its protective effect on allicin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shuang Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jun Zhao
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Zhiyuan Jiang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Jing Mu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
| | - Liurong Huang
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
9
|
Bhattacharya S, Sen D, Bhattacharjee C. Inhibition Mechanism Study for Diallyl Thiosulfinate (Allicin) Against Crucial Bacterial Proteins Through in silico Molecular Docking Simulation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bhattacharya S, Sen D, Bhattacharjee C. Strategic development to stabilize bioactive diallyl thiosulfinate by pH responsive non ionic micelle carrier system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|