1
|
Enzyme activity of Aspergillus section Nigri strains isolated from the Korean fermentation starter, nuruk. J Microbiol 2022; 60:998-1006. [DOI: 10.1007/s12275-022-2071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
|
2
|
Tao N, Wu X, Zhang F, Pi Z, Wen J, Fang D, Zhou L. Enhancement of sewage sludge dewaterability by fungal conditioning with Penicillium simplicissimum NJ12: from bench- to pilot-scale consecutive multi-batch investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62255-62265. [PMID: 34184224 DOI: 10.1007/s11356-021-15170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Bench- and pilot-scale successive multi-batch trials were conducted to investigate the performance and sustainability of fungal conditioning with Penicillium simplicissimum NJ12 for improving sludge dewatering. The dominant factors affecting the sludge dewaterability improvement by P. simplicissimum NJ12 were also identified. Fungal treatment with P. simplicissimum NJ12 at a volume fraction of 5% of the inoculum greatly improved the sludge dewaterability. This improvement was characterized by sharp decreases in the specific resistance to filtration from 1.97 × 1013 to 3.52 × 1011 m/kg and capillary suction time from 32 to 12 s within 3 days. Stepwise multiple linear regression analysis showed that a marked decrease (58.8%) in the protein content in slime extracellular polymeric substances and an increase in the zeta potential of the sludge (from -35 to -10 mV) were the most important factors that improved the dewaterability of sludge after fungal treatment. Consecutive processes of fungal treatment could be realized by recirculating the fungal-treated sludge with a recycling rate of 1:2 (Vbiotreated sludge/Vtotal sludge). The treatment effectiveness was maintained only over three successive cycles, but replenishment with fresh P. simplicissimum NJ12 would be provided periodically at set batch intervals. These findings demonstrate the possibility of P. simplicissimum NJ12-assisted fungal treatment for enhancing sludge dewatering.
Collapse
Affiliation(s)
- Neng Tao
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiu Wu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilei Pi
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Wen
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Fang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Lixiang Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
3
|
Xue X, Bi F, Liu B, Li J, Zhang L, Zhang J, Gao Q, Wang D. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Microb Cell Fact 2021; 20:168. [PMID: 34446025 PMCID: PMC8394697 DOI: 10.1186/s12934-021-01659-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucose transporters play an important role in the fermentation of citric acid. In this study, a high-affinity glucose transporter (HGT1) was identified and overexpressed in the industrial strain A. niger CGMCC 10142. HGT1-overexpressing strains using the PglaA and Paox1 promoters were constructed to verify the glucose transporter functions. RESULT As hypothesized, the HGT1-overexpressing strains showed higher citric acid production and lower residual sugar contents. The best-performing strain A. niger 20-15 exhibited a reduction of the total sugar content and residual reducing sugars by 16.5 and 44.7%, while the final citric acid production was significantly increased to 174.1 g/L, representing a 7.3% increase compared to A. niger CGMCC 10142. Measurement of the mRNA expression levels of relevant genes at different time-points during the fermentation indicated that in addition to HGT1, citrate synthase and glucokinase were also expressed at higher levels in the overexpression strains. CONCLUSION The results indicate that HGT1 overexpression resolved the metabolic bottleneck caused by insufficient sugar transport and thereby improved the sugar utilization rate. This study demonstrates the usefulness of the high-affinity glucose transporter HGT1 for improving the citric acid fermentation process of Aspergillus niger CGMCC 10142.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Futi Bi
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Boya Liu
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Jie Li
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lan Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiang Gao
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Depei Wang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
4
|
Melo AM, Poester VR, Trapaga M, Nogueira CW, Zeni G, Martinez M, Sass G, Stevens DA, Xavier MO. Diphenyl diselenide and its interaction with antifungals against Aspergillus spp. Med Mycol 2020; 59:myaa072. [PMID: 32844203 DOI: 10.1093/mmy/myaa072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Given the few antifungal classes available to treat aspergillosis, this study aimed to evaluate the in vitro antifungal activity of diphenyl diselenide (PhSe)2 alone and in combination with classical antifungals against Aspergillus spp., and its in vivo activity in a systemic experimental aspergillosis model. We performed in vitro broth microdilution assay of (PhSe)2 against 32 Aspergillus isolates; and a checkboard assay to test the interaction of this compound with itraconazole (ITC), voriconazole (VRC), amphotericin B (AMB), and caspofungin (CAS), against nine Aspergillus isolates. An experimental model of invasive aspergillosis in mice was studied, and survival curves were compared between an untreated group and groups treated with 100 mg/kg ITC, or (PhSe)2 in different dosages (10 mg/kg, 50 mg/kg and 100 mg/kg). All Aspergillus non-fumigatus and 50% of A. fumigatus were inhibited by (PhSe)2 in concentrations ≤ 64 µg/ml, with significant differences in MICs between the sections. Synergism or additive effect in the in vitro (PhSe)2 interaction with VRC and CAS was observed against the majority of isolates, and with ITC against the non-fumigatus strains. In addition to the inhibitory interaction, (PhSe)2 was able to add a fungicidal effect to CAS. Survival curves from the systemic experimental aspergillosis model demonstrated that the inoculum caused an acute and lethal infection in mice, and no treatment applied significantly prolonged survival over that of the control group. The results highlight the promising activity of (PhSe)2 against Aspergillus species, but more in vivo studies are needed to determine its potential applicability in aspergillosis treatment. LAY SUMMARY The activity of diphenyl diselenide (PhSe)2 alone and in combination with itraconazole, voriconazole, and caspofungin, is described against three of the most pathogenic Aspergillus sections. (PhSe)2 may prove useful in therapy of infection in future; further study is required.
Collapse
Affiliation(s)
- Aryse Martins Melo
- Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
- Department of Infectious Diseases/Reference Unit for Parasitic and Fungal Infections, National Institute of Health, Dr. Ricardo Jorge, Lisbon, Portugal
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Trapaga
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Cristina Wayne Nogueira
- Biological Sciences Post-graduation program, Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria. RS, Brazil
| | - Gilson Zeni
- Biological Sciences Post-graduation program, Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria. RS, Brazil
| | - Marife Martinez
- California Institute for Medical Research, San Jose, California, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, California, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, California, USA
| | - Melissa Orzechowski Xavier
- Microbiology and Parasitology Post-graduation program, Institute of Biology, Federal University of Pelotas, Pelotas, RS, Brazil
- Mycology Laboratory, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
- Health Science Post-graduation program, College of Medicine, Federal University of Rio Grande, Rio Grande, RS, Brazil
- California Institute for Medical Research, San Jose, California, USA
| |
Collapse
|
5
|
Oliveira LT, Lopes LG, Ramos SB, Martins CHG, Jamur MC, Pires RH. Fungal biofilms in the hemodialysis environment. Microb Pathog 2018; 123:206-212. [DOI: 10.1016/j.micpath.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023]
|
6
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
7
|
Guo H, Wan H, Chen H, Fang F, Liu S, Zhou J. Proteomic analysis of the response of α-ketoglutarate-producer Yarrowia lipolytica WSH-Z06 to environmental pH stimuli. Appl Microbiol Biotechnol 2016; 100:8829-41. [PMID: 27535241 DOI: 10.1007/s00253-016-7775-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
Abstract
During bioproduction of short-chain carboxylates, a shift in pH is a common strategy for enhancing the biosynthesis of target products. Based on two-dimensional gel electrophoresis, comparative proteomics analysis of general and mitochondrial protein samples was used to investigate the cellular responses to environmental pH stimuli in the α-ketoglutarate overproducer Yarrowia lipolytica WSH-Z06. The lower environmental pH stimuli tensioned intracellular acidification and increased the level of reactive oxygen species (ROS). A total of 54 differentially expressed protein spots were detected, and 11 main cellular processes were identified to be involved in the cellular response to environmental pH stimuli. Slight decrease in cytoplasmic pH enhanced the cellular acidogenicity by elevating expression level of key enzymes in tricarboxylic acid cycle (TCA cycle). Enhanced energy biosynthesis, ROS elimination, and membrane potential homeostasis processes were also employed as cellular defense strategies to compete with environmental pH stimuli. Owing to its antioxidant role of α-ketoglutarate, metabolic flux shifted to α-ketoglutarate under lower pH by Y. lipolytica in response to acidic pH stimuli. The identified differentially expressed proteins provide clues for understanding the mechanisms of the cellular responses and for enhancing short-chain carboxylate production through metabolic engineering or process optimization strategies in combination with manipulation of environmental conditions.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hui Wan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biological Chemical Engineering, Huaqiao University, 668 Jimei Road, Amoy, Fujian, 361021, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Xu J, Bao JW, Su XF, Zhang HJ, Zeng X, Tang L, Wang K, Zhang JH, Chen XS, Mao ZG. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process. Bioprocess Biosyst Eng 2015; 39:391-400. [PMID: 26658985 DOI: 10.1007/s00449-015-1522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022]
Abstract
In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.
Collapse
Affiliation(s)
- Jian Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jia-Wei Bao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xian-Feng Su
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Hong-Jian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xin Zeng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lei Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Ke Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jian-Hua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xu-Sheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Zhong-Gui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
9
|
van Rantwijk F, Stolz A. Enzymatic cascade synthesis of (S)-2-hydroxycarboxylic amides and acids: Cascade reactions employing a hydroxynitrile lyase, nitrile-converting enzymes and an amidase. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Single cell and in vivo analyses elucidate the effect of xylC lactonase during production of D-xylonate in Saccharomyces cerevisiae. Metab Eng 2014; 25:238-47. [DOI: 10.1016/j.ymben.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/15/2014] [Accepted: 07/17/2014] [Indexed: 11/21/2022]
|
11
|
Xu J, Chen YQ, Zhang HJ, Tang L, Wang K, Zhang JH, Chen XS, Mao ZG. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process. Appl Biochem Biotechnol 2014; 174:376-87. [PMID: 25080378 DOI: 10.1007/s12010-014-1070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.
Collapse
Affiliation(s)
- Jian Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
García J, Torres N. Mathematical modelling and assessment of the pH homeostasis mechanisms in Aspergillus niger while in citric acid producing conditions. J Theor Biol 2011; 282:23-35. [DOI: 10.1016/j.jtbi.2011.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 04/16/2011] [Accepted: 04/23/2011] [Indexed: 11/29/2022]
|
13
|
Ou S, Zhang J, Wang Y, Zhang N. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources. Enzyme Res 2011; 2011:848939. [PMID: 21603274 PMCID: PMC3092627 DOI: 10.4061/2011/848939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
A mixture of wheat bran with maize bran as a carbon source and addition of (NH(4))SO(4) as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH(4))SO(4) 1.2 g and MgSO(4) 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures.
Collapse
Affiliation(s)
- Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | |
Collapse
|
14
|
Stratford M, Plumridge A, Nebe-von-Caron G, Archer DB. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory. Int J Food Microbiol 2009; 136:37-43. [PMID: 19846233 DOI: 10.1016/j.ijfoodmicro.2009.09.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.
Collapse
Affiliation(s)
- Malcolm Stratford
- School of Biology, University of Nottingham, University Park, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Capuder M, Šolar T, Benčina M, Legiša M. Highly active, citrate inhibition resistant form of Aspergillus niger 6-phosphofructo-1-kinase encoded by a modified pfkA gene. J Biotechnol 2009; 144:51-7. [DOI: 10.1016/j.jbiotec.2009.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/20/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
16
|
Diano A, Peeters J, Dynesen J, Nielsen J. Physiology of Aspergillus niger in oxygen-limited continuous cultures: Influence of aeration, carbon source concentration and dilution rate. Biotechnol Bioeng 2009; 103:956-65. [PMID: 19382249 DOI: 10.1002/bit.22329] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In industrial production of enzymes using the filamentous fungus Aspergillus niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations. Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol is being produced in order to ensure reoxidation of NADH, and this is the main cellular response to balance the ratio NADH/NAD at low oxygen availability. Mannitol production is also coupled to low specific growth rate, which suggests a control of carbon catabolite repression on the mannitol pathway. The roles of two other polyols, erythritol and glycerol, were also investigated. Both compounds are known to accumulate intracellularly, at high osmotic pressure, in order to restore the osmotic balance, but we show that the efficiency of this system is affected by a leakage of polyols through the membrane.
Collapse
Affiliation(s)
- A Diano
- Center for Microbial Biotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
17
|
Live-Cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. EUKARYOTIC CELL 2009; 8:703-12. [PMID: 19286983 DOI: 10.1128/ec.00333-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel, genetically encoded, ratiometric pH probe (RaVC) was constructed to image and measure intracellular pH in living hyphae of Aspergillus niger. RaVC is a chimeric protein based on the pH-sensitive probe pHluorin, which was partially codon optimized for expression in Aspergillus. Intracellular pH imaging and measurement was performed by simultaneous, dual-excitation confocal ratio imaging. The mean cytoplasmic pH measured was 7.4 to 7.7 based on calibrating RaVC in situ within nigericin-treated hyphae. Pronounced, longitudinal cytoplasmic pH gradients were not observed in the apical 20 microm of actively growing hyphae at the periphery of 18-h-old colonies. The cytoplasmic pH remained unchanged after prolonged growth in buffered medium with pH values between 2.5 or 9.5. Sudden changes in external pH significantly changed cytoplasmic pH by <1.3 pH units, but it returned to its original value within 20 min following treatment. The weak acid and antifungal food preservative sorbic acid caused prolonged, concentration-dependent intracellular acidification. The inhibition of ATPases with N-ethylmaleimide, dicychlohexylcarbodimide, or sodium azide caused the cytoplasmic pH to decrease by <1 pH unit. Treatment with the protonophore carbonyl cyanide m-chlorophenylhydrazone or cyanide p-(trifluoromethoxy) phenylhydrazone reduced the cytoplasmic pH by <1 pH unit. In older hyphae from 32-h-old cultures, RaVC became sequestered within large vacuoles, which were shown to have pH values between 6.2 and 6.5. Overall, our study demonstrates that RaVC is an excellent probe for visualizing and quantifying intracellular pH in living fungal hyphae.
Collapse
|
18
|
Šolar T, Turšič J, Legiša M. The role of glucosamine-6-phosphate deaminase at the early stages of Aspergillus niger growth in a high-citric-acid-yielding medium. Appl Microbiol Biotechnol 2008; 78:613-9. [DOI: 10.1007/s00253-007-1339-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
|
19
|
Abstract
Citric acid is a commodity chemical produced and consumed throughout The World. It is used mainly in the food and beverage industry, primarily as an acidulant. Although it is one of the oldest industrial fermentations, its World production is still in rapid increasing. Global production of citric acid in 2007 was over 1.6 million tones. Biochemistry of citric acid fermentation, various microbial strains, as well as various substrates, technological processes and product recovery are presented. World production and economics aspects of this strategically product of bulk biotechnology are discussed.
Collapse
Affiliation(s)
- Marin Berovic
- Department of Chemical, Biochemical and Ecology Engineering, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1001 Ljubljana, Slovenia.
| | | |
Collapse
|
20
|
Legisa M, Mattey M. Changes in primary metabolism leading to citric acid overflow in Aspergillus niger. Biotechnol Lett 2006; 29:181-90. [PMID: 17120089 DOI: 10.1007/s10529-006-9235-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
For citric acid-accumulating Aspergillus niger cells, the enhancement of anaplerotic reactions replenishing tricarboxylic acid cycle intermediates predisposes the cells to form the product. However, there is no increased citrate level in germinating spores and a complex sequence of developmental events is needed to change the metabolism in a way that leads to an increased level of tricarboxylic acid cycle intermediates in mycelia. A review of physiological events that cause such intracellular conditions, with the special emphasis on the discussion of hexose transport into the cells and regulation of primary metabolism, predominantly of glycolytic flux during the process, is presented.
Collapse
Affiliation(s)
- Matic Legisa
- National Institute of Chemistry, Ljubljana, Slovenia.
| | | |
Collapse
|
21
|
Mlakar T, Legisa M. citrate inhibition-resistant form of 6-phosphofructo-1-kinase from Aspergillus niger. Appl Environ Microbiol 2006; 72:4515-21. [PMID: 16820438 PMCID: PMC1489355 DOI: 10.1128/aem.00539-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 04/11/2006] [Indexed: 11/20/2022] Open
Abstract
Two forms of Aspergillus niger 6-phosphofructo-1-kinase (PFK1) have been described recently, the 85-kDa native enzyme and 49-kDa shorter fragment that is formed from the former by posttranslational modification. So far, kinetic characteristics have never been determined on the enzyme purified to near homogeneity. For the first time, kinetic parameters were determined for individual enzymes with respect to citrate inhibition. The native 85-kDa enzyme was found to be moderately inhibited by citrate, with the Ki value determined to be 1.5 mM, in the system with 5 mM Mg2+ ions, while increasing magnesium concentrations relieved the negative effect of citrate. An identical inhibition coefficient was determined also in the presence of ammonium ions, although ammonium acted as a strong activator of enzyme activity. On the other hand, the shorter fragment of PFK1 proved to be completely resistant to inhibition by citrate. Allosteric citrate binding sites were most probably lost after the truncation of the C-terminal part of the native protein, in which region some binding sites for inhibitor are known to be located. At near physiological conditions, characterized by low fructose-6-phosphate concentrations, a much higher efficiency of the shorter fragment was observed during an in vitro experiment. Since the enzyme became more susceptible to the positive control by specific ligands, while the negative control was lost after posttranslational modification, the shorter PFK1 fragment seems to be the enzyme most responsible for generating undisturbed metabolic flow through glycolysis in A. niger cells.
Collapse
Affiliation(s)
- Tina Mlakar
- National Institute of Chemistry, Department of Biotechnology, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | |
Collapse
|
22
|
Burgstaller W. Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in Aspergillus and Penicillium. MICROBIOLOGY-SGM 2006; 152:887-893. [PMID: 16514167 DOI: 10.1099/mic.0.28454-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Excretion of organic acids, e.g. citrate, by anamorphic fungi is a frequent phenomenon in natural habitats and in laboratory cultures. In biotechnological processes for citrate production with Aspergillus niger extracellular citrate concentrations up to 1 mol l(-1) are achieved. Intracellular citrate concentrations are in the millimolar range. Therefore the question arises whether citrate excretion depends on active transport. In this article thermodynamic calculations are presented for citrate excretion by A. niger at an extracellular pH of 3 and by Penicillium simplicissimum at an extracellular pH of 7. From the results of these calculations it is concluded that in both cases a passive transport step suffices for citrate excretion.
Collapse
|
23
|
Mesojednik S, Legisa M. Posttranslational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 2005; 71:1425-32. [PMID: 15746345 PMCID: PMC1065176 DOI: 10.1128/aem.71.3.1425-1432.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 10/05/2004] [Indexed: 11/20/2022] Open
Abstract
Two different enzymes exhibiting 6-phosphofructo-1-kinase (PFK1) activity were isolated from the mycelium of Aspergillus niger: the native enzyme with a molecular mass of 85 kDa, which corresponded to the calculated molecular mass of the deduced amino acid sequence of the A. niger pfkA gene, and a shorter protein of approximately 49 kDa. A fragment of identical size also was obtained in vitro by the proteolytic digestion of the partially purified native PFK1 with proteinase K. When PFK1 activity was measured during the proteolytic degradation of the native protein, it was found to be lost after 1 h of incubation, but it was reestablished after induction of phosphorylation by adding the catalytic subunit of cyclic AMP-dependent protein kinase to the system. By determining kinetic parameters, different ratios of activities measured at ATP concentrations of 0.1 and 1 mM were detected with fragmented PFK1, as with the native enzyme. Fructose-2,6-biphosphate significantly increased the Vmax of the fragmented protein, while it had virtually no effect on the native protein. The native enzyme could be purified only from the early stages of growth on a minimal medium, while the 49-kDa fragment appeared later and was activated at the time of a sudden change in the growth rate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of sequential purifications of PFK1 enzymes by affinity chromatography during the early stages of the fungal development suggested spontaneous posttranslational modification of the native PFK1 in A. niger cells, while from the kinetic parameters determined for both isolated forms it could be concluded that the fragmented enzyme might be more efficient under physiological conditions.
Collapse
Affiliation(s)
- Suzana Mesojednik
- National Institute of Chemistry, Hajdrihova 19, PO Box 660, Si-1001 Ljubljana, Slovenia
| | | |
Collapse
|