1
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
2
|
Establishment of A Reversibly Inducible Porcine Granulosa Cell Line. Cells 2020; 9:cells9010156. [PMID: 31936362 PMCID: PMC7017277 DOI: 10.3390/cells9010156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Granulosa cells (GCs) are the key components of ovarian follicles for regulating oocyte maturation. Previous established GC lines have allowed prolonged proliferation, but lost some physiological features owing to long-term immortalization. This study was to establish an induced immortal porcine GC line with reversible proliferation status by the tetracycline inducible (Tet-on) 3G system. Our conditional immortal porcine GCs (CIPGCs) line steadily propagated for at least six months and displayed primary GC morphology when cultured in the presence of 50 ng/mL doxycycline [Dox (+)]. Upon Dox withdrawal [Dox (–)], Large T-antigen expression, reflected by mCherry fluorescence, gradually became undetectable within 48 h, accompanied by less proliferation and size increase. The levels of estradiol and progesterone, and the expression of genes associated with steroid production, such as CYP11A1 (cytochrome P450 family 11), 3β-HSD (3β-hydroxysteroid dehydrogenase), StAR (steroidogenic acute regulatory protein), and CYP19A1 (cytochrome P450 family 19 subfamily a member 1), were all significantly higher in the Dox (–) group than Dox (+) group. The CIPGCs could switch into a proliferative state upon Dox induction. Interestingly, the expression of StAR and CYP19A1 in the CIPGCs (–Dox) was significantly increased by adding porcine follicular fluid (PFF) to mimic an ovary follicle environment. Moreover, PFF priming the CIPGCs in Dox (–) group resulted in similar estradiol production as that of primary GC, and enabled this cell line to respond to gonadotrophins in estradiol production. Collectively, we have established an inducible immortal porcine GC line, which offers a unique and valuable model for future research on the regulation of ovarian functions.
Collapse
|
3
|
Scharfmann R, Staels W, Albagli O. The supply chain of human pancreatic β cell lines. J Clin Invest 2019; 129:3511-3520. [PMID: 31478912 PMCID: PMC6715382 DOI: 10.1172/jci129484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Patients with type 1 or type 2 diabetes have an insufficiency in their functional β cell mass. To advance diabetes treatment and to work toward a cure, a better understanding of how to protect the pancreatic β cells against autoimmune or metabolic assaults (e.g., obesity, gestation) will be required. Over the past decades, β cell protection has been extensively investigated in rodents both in vivo and in vitro using isolated islets or rodent β cell lines. Transferring these rodent data to humans has long been challenging, at least partly for technical reasons: primary human islet preparations were scarce and functional human β cell lines were lacking. In 2011, we described a robust protocol of targeted oncogenesis in human fetal pancreas and produced the first functional human β cell line, and in subsequent years additional lines with specific traits. These cell lines are currently used by more than 150 academic and industrial laboratories worldwide. In this Review, we first explain how we developed the human β cell lines and why we think we succeeded where others, despite major efforts, did not. Next, we discuss the use of such functional human β cell lines and share some perspectives on their use to advance diabetes research.
Collapse
Affiliation(s)
- Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Willem Staels
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Albagli
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
4
|
Liu C, QiNan W, XiaoTian L, MengLiu Y, XiaGuang G, WeiLing L, ZiWen L, Ling Z, GangYi Y, Bing C. TERT and Akt Are Involved in the Par-4-Dependent Apoptosis of Islet β Cells in Type 2 Diabetes. J Diabetes Res 2018; 2018:7653904. [PMID: 30186877 PMCID: PMC6112224 DOI: 10.1155/2018/7653904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Islet β cell apoptosis plays an important role in type 2 diabetes. We previously reported that Par-4-mediated islet β cell apoptosis is induced by high-glucose/fatty acid levels. In the present study, we show that Par-4, which is induced by high-glucose/fatty acid levels, interacts with and inhibits TERT in the cytoplasm and then translocates to the nucleus. Par-4 also inhibited Akt phosphorylation, leading to islet β cell apoptosis. We inhibited Par-4 in islet β cells under high-glucose/fatty acid conditions and knocked out Par-4 in diabetic mice, which led to the up-regulation of TERT and an improvement in the apoptosis rate. We inhibited Akt phosphorylation in islet β cells and diabetic mice, which led to aggressive apoptosis. In addition, the biological film interference technique revealed that Par-4 bound to TERT via its NLS and leucine zipper domains. Our research suggests that Par-4 activation and binding to TERT are key steps required for inducing the apoptosis of islet β cells under high-glucose/fatty acid conditions. Inhibiting Akt phosphorylation aggravated apoptosis by activating Par-4 and inhibiting TERT, and Par-4 inhibition may be an attractive target for the treatment of islet β cell apoptosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Apoptosis
- Blood Glucose/metabolism
- Case-Control Studies
- Cell Line, Tumor
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Humans
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/pathology
- Leucine Zippers
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphorylation
- Protein Binding
- Protein Interaction Domains and Motifs
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Thrombin/deficiency
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- Signal Transduction
- Telomerase/blood
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- Chen Liu
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wu QiNan
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lei XiaoTian
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang MengLiu
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Gan XiaGuang
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Leng WeiLing
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liang ZiWen
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang Ling
- Outpatient Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang GangYi
- Endocrine Department, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chen Bing
- Endocrine Department, First Affiliated Hospital of the Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
5
|
Qi Nan W, Ling Z, Bing C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin Ther Targets 2015; 19:849-64. [PMID: 25677239 DOI: 10.1517/14728222.2015.1016500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qi Nan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Chongqing, Post number: 400038 , China
| | | | | |
Collapse
|
6
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|
7
|
Chen J, Fu R, Cui Y, Pan J, Li Y, Zhang X, Evans SM, Cui S, Liu J. LIM-homeodomain transcription factor Isl-1 mediates kisspeptin's effect on insulin secretion in mice. Mol Endocrinol 2014; 28:1276-90. [PMID: 24956377 DOI: 10.1210/me.2013-1410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kisspeptin and the G protein-coupled receptor 54 (GPR54) are highly abundant in the pancreas. In addition, circulating kisspeptin directly influences insulin secretion through GPR54. However, the mechanisms by which kisspeptin affects insulin release are unclear. The LIM-homeodomain transcription factor, Isl-1, is expressed in all pancreatic islet cells and is involved in regulating both islet development and insulin secretion. We therefore investigated potential interactions between kisspeptin and Isl-1. Our results demonstrate that Isl-1 and GPR54 are coexpressed in mouse pancreatic islet β-cells and NIT cells. Both in vitro and in vivo results demonstrate that kisspeptin-54 (KISS-54) inhibits Isl-1 expression and insulin secretion and both the in vivo and in vitro effects of KISS-54 on insulin gene expression and secretion are abolished when an Isl-1-inducible knockout model is used. Moreover, our results demonstrate that the direct action of KISS-54 on insulin secretion is mediated by Isl-1. Our results further show that KISS-54 influences Isl-1 expression and insulin secretion through the protein kinase C-ERK1/2 pathway. Conversely, insulin has a feedback loop via the Janus kinase-phosphatidylinositol 3-kinase pathway regulating kisspeptin expression and secretion. These findings are important in understanding mechanisms of insulin secretion and metabolism in diabetes.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Agrobiotechnology (J.C., R.F., J.P., Y.L., X.Z., S.C., J.L.), College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China; The 306th Hospital of PLA (Y.C.), Beijing 100853, People's Republic of China; and Skaggs School of Pharmacy (S.M.E.), University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen J, Fu R, Cui Y, Li YS, Pan JR, Liu JL, Luo HS, Yin JD, Li DF, Cui S. LIM-homeodomain transcription factor Isl-1 mediates the effect of leptin on insulin secretion in mice. J Biol Chem 2013; 288:12395-405. [PMID: 23504315 DOI: 10.1074/jbc.m113.450536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In addition to the well known regulating effects of leptin on energy balance and glucose homeostasis through the central nervous system, circulating leptin has a direct effect on pancreatic islet and insulin secretion through its receptor (OBRb). The LIM-homeodomain transcription factor Isl-1 is expressed in all classes of pancreatic endocrine cells and is involved in regulating both islet development and insulin secretion. Both OBRb and Isl-1 mutations result in obesity-related diabetes. However, the interactions and physiological significance of leptin and Isl-1 in pancreatic islets remain to be established. Here, we show that most of leptin target cells in pancreatic islets and NIT beta cells express Isl-1. Both in vivo and in vitro results demonstrate that leptin suppresses Isl-1 expression and insulin secretion in islet in physiological and pathophysiological conditions, e.g. high fat diet. This effect of leptin on insulin secretion is lost in leptin receptor-defective db/db and Isl-1-inducible knock-out mice. We conclude that the action of leptin on insulin secretion is at least partly mediated by Isl-1. Another new finding of this study is that Isl-1 acts as a direct downstream target of leptin signaling molecule STAT3 to influence the effect of leptin on insulin secretion, whereas inversely, insulin has feedback regulating effects on Isl-1 expression through JAK-STAT3 pathway. These findings are crucial for understanding the mechanisms regulating insulin secretion and metabolism in related diseases, such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin H, Liu H, Sun Q, Yuan G, Zhang L, Chen Z. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In Vitro Cell Dev Biol Anim 2013; 49:114-21. [DOI: 10.1007/s11626-012-9576-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/14/2012] [Indexed: 11/28/2022]
|